首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 microm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45+/-0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02+/-0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (sigmaa). The high correlation that has been found between these variables indicates that sigmaa is a good indicator of the degree of contamination of urbanized areas. The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.  相似文献   

2.
Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.  相似文献   

3.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

4.
Ambient monitored data at Santiago, Chile, are analyzed using box models with the goal of assessing contributions of different economic activities to air pollution levels. The box modeling approach was applied to PM10, PM2.5 and coarse (PM10–PM2.5) particulate matter (PM) fractions; the period analyzed is 1989–1999. A linear model for each PM fraction was obtained, having as independent variables CO and SO2 concentrations, plus a term proportional to (wind speed)−1 that lumps together non-combustion emissions and secondary generation terms; wet scavenging is included as another independent variable. Model identification results show good agreement for the different parameters across monitoring stations. The washout ratios and scavenging coefficients agree with data published in the literature, being higher for the coarse PM fraction. The CO and SO2 coefficients fitted for 1989–1995 agree with a priori estimates for the same period. Background estimates for the PM fractions are in agreement with measurement campaigns in upwind sites. Results show that transportation sources have become the dominant contributors to ambient PM levels, while stationary sources have decreased their contributions in the last years. The relative importance of mobile sources to PM2.5 ambient concentrations has doubled in the last 10 years, whereas stationary sources have reduced their relative contributions to half the value in the early 1990s. Model estimates of regional background of PM2.5 and PM10 have decreased 50% and 22% in the last decade, respectively; coarse background has shown no significant change. The final conclusion is that there is room and need for a more intensive emission reduction strategy for Santiago, focusing on mobile sources. The approach pursued in this work is feasible for cities or regions where comprehensive, transport and chemistry models are not available yet, but estimates of air quality contributions are needed for policy purposes. The methodology requires data on ambient air quality measurements and surface meteorology.  相似文献   

5.
Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 microm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4(2-)], nitrate [NO3-], ammonium [NH4+]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and beta-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12-42 microg m(-3). Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.  相似文献   

6.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

7.
Stable carbon isotope ratio (δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August–September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination (r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning.The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).  相似文献   

8.
In this study aerosol samples of PM10 and PM2.5 collected from 18 February 2001 to 1 May 2001 in Nanjing, China were analyzed for their water-soluble organic compounds. A series of homologous dicarboxylic acids (C2–10) and two kinds of aldehydes (methylglyoxal and 2-oxo-malonaldehyde) were detected by GC and GC/MS. Among the identified compounds, the concentration of oxalic acid was the highest at all the five sites, which ranged from 178 to 1423 ng/m3. The second highest concentration of dicarboxylic acids were malonic and succinic acids, which ranged from 26.9 to 243 ng/m3. Higher level of azelaic acid was also observed, of which the maximum was 301 ng/m3. As the highest fraction of dicarboxylic acids, oxalic acid comprised from 28% to 86% of total dicarboxylic acids in PM10 and from 41% to 65% of total dicarboxylic acids in PM2.5. The dicarboxylic acids (C2, C3, C4) together accounted for 38–95% of total dicarboxylic acids in PM10 and 59–87% of dicarboxylic acids in PM2.5. In this study, the total dicarboxylic acids accounted for 2.8–7.9% of total organic carbon (TOC) of water-soluble matters for PM10 and 3.4–11.8% of TOC for PM2.5. All dicarboxylic acids detected in this study together accounted for about 1% of particle mass. The concentration of azelaic acid was higher at one site than others, which may be resulted from higher level of volatile fat used for cooking. The amounts of dicarboxyic acids (C2,3,4,9) and 2-oxo-malonaldehyde of PM2.5 were higher in winter and lower in spring. Compared with other major metropolitans in the world, the level of oxalic acid concentration of Nanjing is much higher, which may be contributed to higher level of particle loadings, especially for fine particles.  相似文献   

9.
This paper presents chemical mass balance (CMB) analysis of organic molecular marker data to investigate the sources of organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. The model accounts for emissions from eight primary source classes, including major anthropogenic sources such as motor vehicles, cooking, and biomass combustion as well as some primary biogenic emissions (leaf abrasion products). We consider uncertainty associated with selection of source profiles, selection of fitting species, sampling artifacts, photochemical aging, and unknown sources. In the context of the overall organic carbon (OC) mass balance, the contributions of diesel, wood-smoke, vegetative detritus, road dust, and coke-oven emissions are all small and well constrained; however, estimates for the contributions of gasoline-vehicle and cooking emissions can vary by an order of magnitude. A best-estimate solution is presented that represents the vast majority of our CMB results; it indicates that primary OC only contributes 27±8% and 50±14% (average±standard deviation of daily estimates) of the ambient OC in the summer and winter, respectively. Approximately two-thirds of the primary OC is transported into Pittsburgh as part of the regional air mass. The ambient OC that is not apportioned by the CMB model is well correlated with secondary organic aerosol (SOA) estimates based on the EC-tracer method and ambient concentrations of organic species associated with SOA. Therefore, SOA appears to be the major component of OC, not only in summer, but potentially in all seasons. Primary OC dominates the OC mass balance on a small number of nonsummer days with high OC concentrations; these events are associated with specific meteorological conditions such as local inversions. Primary particulate emissions only contribute a small fraction of the ambient fine-particle mass, especially in the summer.  相似文献   

10.
In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/ EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28-June 17) and fall (August 24-September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87-28.38 microgC m-3, with a mean of 4.07+/- 2.60 microgC m-3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 .microgC m-3, with a mean of 1.35 +/- 0.71 microgC m-3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9-9.6 microgC m-3, with a mean of 2.30 +/-0.80 microgC m-3, whereas EC ranged approximately from 0.01 to 5.40 microgC m-3, with a mean of 0.66 +/- 0.38 microgC m-3. Average contributions of EC to TC and WSOC to OC were 26.0% +/- 9.7% and 20.6% +/-7.4%, and 37.6% +/- 23.5% and 57.2% +/- 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The contribution of secondary OC to total OC varied approximately between 8.4% and 32.2% and depended on air mass type.  相似文献   

11.
采集朔州市市区采暖季和非采暖季季PM10样品,测定其中元素碳(EC)和有机碳(OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行了研究,结果表明:朔州市市区PM10中OC、EC平均浓度分别为(25.95±9.36)μg/m3和(26.58±10.36)μg/m3,总碳气溶胶(TAC)在PM10中的平均百分含量为30.1%;采暖季OC和EC浓度大于非采暖季,且OC、EC质量浓度大小在5个采样点位均呈现出点位5(工业开发区) > 点位2(居民区) > 点位1(商业、居民混合区) > 点位3(商业、文教混合区) > 点位4(相对清洁区)的变化规律,其中,点位5的OC、EC质量浓度最大,分别为(29.66±8.72)μg/m3和(31.40±10.42)μg/m3;PM10中OC/EC在采暖季和非采暖季比值均低于2,一次污染严重;OC和EC相关性较好,相关系数(R2)分别为0.85(采暖季)和0.69(非采暖季),说明PM10中的碳气溶胶主要来源于一次排放源,加强对燃煤烟尘、机动车尾气和生物质的燃烧等空气污染来源的控制对于改善朔州市环境空气质量有重要作用。  相似文献   

12.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   

13.
Feng J  Chan CK  Fang M  Hu M  He L  Tang X 《Chemosphere》2006,64(8):1393-1400
Solvent extractable organic compounds (SEOC), organic carbon, elemental carbon and water soluble organic carbon (WSOC) in PM(2.5) samples collected in Shanghai, China in 2002 and 2003 were measured to determine the composition and sources of the organic matter in atmospheric aerosols. Distinct seasonal variations were detected with higher concentrations of organic matter in winter. The concentration of total carbon of about 20 microg m(-3) in winter was about three times the summer value. About 30% of the total carbon was water soluble. Unresolved complex mixture (UCM) and fatty acids were the most abundant components quantified in SEOC, similar to other Chinese cities previously studied. High ratio of UCM to n-alkanes (U:R) and the composition of triterpanes indicated that engine exhaust was a major source of the airborne organic matter. Emissions from coal burning had more impact in the rural areas, according to the U:R value and PAHs composition. Chemical mass balance (CMB) modeling shows that about half of the organic carbon was from engine exhaust and about 15% was from coal burning. No clear spatial variation in the concentration of the organic matter was found between urban and rural areas. Our results showed that due to the rapid urbanization and relocation of industrial plants from urban areas to rural areas in the past 20 years, air pollution in rural areas is becoming a serious problem in Shanghai and the Yangtze River delta.  相似文献   

14.
Aerosol samples for PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 and 10 μm, respectively) were collected from 1993 to 1995 at five sites in Brisbane, a subtropical coastal city in Australia. This paper investigates the contributions of emission sources to PM2.5 and PM10 aerosol mass in Brisbane. Source apportionment results derived from the chemical mass balance (CMB), target transformation factor analysis (TTFA) and multiple linear regression (MLR) methods agree well with each other. The contributions from emission sources exhibit large variations in particle size with temporal and spatial differences. On average, the major contributors of PM10 aerosol mass in Brisbane include: soil/road side dusts (25% by mass), motor vehicle exhausts (13%, not including the secondary products), sea salt (12%), Ca-rich and Ti-rich compounds (11%, from cement works and mineral processing industries), biomass burning (7%), and elemental carbon and secondary products contribute to around 15% of the aerosol mass on average. The major sources of PM2.5 aerosols at the Griffith University (GU) site (a suburban site surrounded by forest area) are: elemental carbon (24% by mass), secondary organics (21%), biomass burning (15%) and secondary sulphate (14%). Most of the secondary products are related to motor vehicle exhausts, so, although motor vehicle exhausts contribute directly to only 6% of the PM2.5 aerosol mass, their total contribution (including their secondary products) could be substantial. This pattern of source contribution is similar to the results for Rozelle (Sydney) among the major Australian studies, and is less in contributions from industrial and motor vehicular exhausts than the other cities. An attempt was made to estimate the contribution of rural dust and road side dust. The results show that road side dusts could contribute more than half of the crustal matter. More than 80% of the contribution of vehicle exhausts arises from diesel-fuelled trucks/buses. Biomass burning, large contributions of crustal matter, and/or local contributing sources under calm weather conditions, are often the cause of the high PM10 episodes at the GU site in Brisbane.  相似文献   

15.
The UCD/CIT air quality model with the Caltech Atmospheric Chemistry Mechanism (CACM) was used to predict source contributions to secondary organic aerosol (SOA) formation in the San Joaquin Valley (SJV) from December 15, 2000 to January 7, 2001. The predicted 24-day average SOA concentration had a maximum value of 4.26 μg m?3 50 km southwest of Fresno. Predicted SOA concentrations at Fresno, Angiola, and Bakersfield were 2.46 μg m?3, 1.68 μg m?3, and 2.28 μg m?3, respectively, accounting for 6%, 37%, and 4% of the total predicted organic aerosol. The average SOA concentration across the entire SJV was 1.35 μg m?3, which accounts for approximately 20% of the total predicted organic aerosol. Averaged over the entire SJV, the major SOA sources were solvent use (28% of SOA), catalyst gasoline engines (25% of SOA), wood smoke (16% of SOA), non-catalyst gasoline engines (13% of SOA), and other anthropogenic sources (11% of SOA). Diesel engines were predicted to only account for approximately 2% of the total SOA formation in the SJV because they emit a small amount of volatile organic compounds relative to other sources. In terms of SOA precursors within the SJV, long-chain alkanes were predicted to be the largest SOA contributor, followed by aromatic compounds. The current study identifies the major known contributors to the SOA burden during a winter pollution episode in the SJV, with further enhancements possible as additional formation pathways are discovered.  相似文献   

16.
Formaldehyde, acetaldehyde, acetone, propanal, butanal, 2-butenal, 3-methylbutanal, hexanal, benzaldehyde, 2-methylbenzaldehyde, and 2,5-dimethylbenzaldehyde were measured during six spring days at downtown Santiago de Chile. Measurements were performed 24h/day and averaged over three hour periods. The averages of the maxima (ppbv) were, formaldehyde: 3.9+/-1.4; butanal: 3.3+/-3.4; acetaldehyde: 3.0+/-0.9; acetone: 2.4+/-1.0; 2-butenal: 0.56+/-0.52; propanal: 0.46+/-0.21; benzaldehyde: 0.34+/-0.3; 3-butanal: 0.11+/-0.05; hexanal: 0.11+/-0.08; 2-methylbenzaldehyde: 0.08+/-0.05; 2,5-dimethylbenzaldehyde: 0.05+/-0.03. Aliphatic aldehydes (C1-C3) are strongly correlated among them and weakly with primary (toluene) and secondary (ozone plus nitrogen dioxide or PAN) pollutants. In particular, the correlation between acetaldehyde and propanal values remains even if diurnal and nocturnal data are considered separately, indicating similar sources. All these aldehydes present maxima values in the morning (9-12h) and minima at night (0-3h). The best correlation is observed when butanal and 2-butenal data are considered (r=0.99, butanal/2-butenal=6.2). These compounds present maxima values during the 3-6h period, with minima values in the 0-3h period. These data imply a strong pre-dawn emission. Other aldehydes show different daily profiles, suggesting unrelated origins. Formaldehyde is the aldehyde whose concentration values best correlate with the levels of oxidants. The contribution of primary emissions and photochemical processes to formaldehyde concentrations were estimated by using a multiple regression. This treatment indicates that (32+/-16)% of measured values arise from direct emissions, while (79+/-23)% is attributable to secondary formation.  相似文献   

17.
In the city of Santiago, Chile, air quality is defined in terms of particulate matter with an aerodynamic diameter < or = 10 microm (PM10) concentrations. An air quality forecasting model based on past concentrations of PM10 and meteorological conditions currently is used by the metropolitan agency for the environment, which allows restrictions to emissions to be imposed in advance. This model, however, fails to forecast between 40 and 50% of the days considered to be harmful for the inhabitants every year. Given that a high correlation between particulate matter and carbon monoxide (CO) concentrations is observed at monitoring stations in the city, a model for CO concentration forecasting would be a useful tool to complement information about expected air quality in the city. Here, the results of a neural network-based model aimed to forecast maximum values of the 8-hr moving average of CO concentrations for the next day are presented. Forecasts from the neural network model are compared with those produced with linear regressions. The neural network model seems to leave more room to adjust free parameters with 1-yr data to predict the following year's values. We have worked with 3 yr of data measured at the monitoring station located in the zone with the worst air quality in the city of Santiago, Chile.  相似文献   

18.
Collocated PM2.5 measurements using a conventional R&P TEOM (model 1400a) and a TEOM-FDMS were performed at a Paris urban background site during winter/summer field experiments. Results showed that conventional TEOM underestimates PM2.5 mass concentrations by about 50% in winter and 35% in summer. They also confirmed that this negative sampling artifact, due to the volatilization of semi-volatile material (SVM) inside the instrument, cannot be accurately accommodated by a single correction factor because of SVM routine fluctuations. A basic filter-based investigation of the SVM chemical composition also indicated that SVM, measured by the TEOM–FDMS, is mainly formed by ammonium nitrate in winter while significant contributions of semi-volatile organic matter were observed in summer. The latter species was found to possibly account for more than 50% of secondary organic aerosol formed during summer afternoons. These findings call for more investigation of the SVM chemical composition, particularly during the summer season, in Paris and in Europe.  相似文献   

19.
Comparison of PM2.5 carbon measurement methods in Hong Kong, China   总被引:1,自引:0,他引:1  
Samples from Hong Kong, China, were analyzed for organic carbon (OC), elemental carbon (EC), and total carbon (TC) by three thermal protocols (low-temperature IMPROVE and high-temperature STN and NIOSH) and two optical monitoring methods: reflectance and transmittance. Good agreement (+/-10%) for TC among the three protocols was observed for sample loadings of 1-55 microg m(-3). The two protocols using a reflectance pyrolysis correction showed best agreement for EC, with <20% differences found for approximately 80% of the samples. Hong Kong has a large diesel fleet, and for some heavily loaded samples the light transmittance was too low for quantitative detection, resulting in large uncertainties in the OC/EC split based on transmittance. Hong Kong experienced OC levels similar to those at US sites, but has much higher EC concentrations. OC/EC ratios range from 2 to 5 at two US sites and from 0.2 to 1.2 at three Hong Kong sites.  相似文献   

20.
This study investigates the water-soluble ionic constituents (Na+, K+, NH4 +, Ca2+, Mg2+, Cl?, NO3 ?, SO4 2?) associated to PM2.5 particle fraction at two urban sites in the city of Thessaloniki, northern Greece, an urban traffic site (UT) and urban background site (UB). Ionic constituents represent a significant fraction of PM2.5 mass (29.6 at UT and 41.5 % at UB). The contribution of marine aerosol was low (<1.5 %). Secondary inorganic aerosols (SIA) represent a significant fraction of PM2.5 mass contributing to 26.9?±?12.4 % and 39.2?±?13.2 % at UT and UB sites, respectively. Nitrate and sulfate are fully neutralized by ammonium under the existing conditions. The ionic constituents were evaluated in relation to their spatial and temporal variation, their gaseous precursors, meteorological conditions, local and long-range transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号