首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   

2.
To better understand the influence of sources and atmospheric processing on aerosol chemical composition, we collected atmospheric particles in Sapporo, northern Japan during spring and early summer 2005 under the air mass transport conditions from Siberia, China and surrounding seas. The aerosols were analyzed for inorganic ions, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and the major water-soluble organic compound classes (i.e., dicarboxylic acids and sugars). SO42? is the most abundant inorganic constituent (average 44% of the identified inorganic ion mass) followed by NH4+ (21%) and NO3? (13%). Concentrations of OC, EC, and WSOC ranged from 2.0–16, 0.24–2.9, and 0.80–7.9 μg m?3 with a mean of 7.4, 1.0, and 3.1 μg m?3, respectively. High OC/EC ratios (range: 3.6–19, mean: 8.7) were obtained, however WSOC/OC ratios (0.23–0.69, 0.44) do not show any significant diurnal changes. These results suggest that the Sapporo aerosols were already aged, but were not seriously affected by local photochemical processes. Identified water-soluble organic compounds (diacids + sugars) account for <10% of WSOC. Based on some marker species and air mass back trajectory analyses, and using stable carbon isotopic compositions of shorter-chain diacids (i.e., C2–C4) as photochemical aging factor of organic aerosols, the present study suggests that a fraction of WSOC in OC is most likely influenced by aerosol aging, although the OC loading in aerosols may be more influenced by their sources and source regions.  相似文献   

3.
Water-soluble organic carbon (WSOC) and atmospheric humic-like substances (HULIS) were investigated for urban PM2.5-fraction aerosol samples, which were collected with the tandem filter method on quartz fibre filters over a non-heating spring season. Sampling artefacts were of importance for all organic chemical fractions, and the back-to-front-filter concentration ratios were on average 28% for WSOC and 17% for HULIS and organic carbon (OC). The difference in the ratios indicates that the water-soluble organics play a more important role in adsorptive artefacts than the organic matter (OM) in general. The results emphasize the need for an appropriate sampling and/or correction method for measuring particulate organic substances in urban environments. The corrected atmospheric concentration of HULIS, obtained by subtracting the back-filter from the front-filter data, was on average 2 μg m−3; which represented 6% of the mean PM2.5 particulate mass, and it made up 45% of the secondary OC. The HULIS carbon accounted for 20% of the OC and 62% of the WSOC, while WSOC made up 32% of OC. The major element composition of HULIS, expressed in molar ratios, was C:H:O:N=22:32:10:1. The molar H/C ratio of 1.49 implies the presence of unsaturated organic compounds, although these were depleted in comparison with rural aerosol or standard fulvic acids. The molar O/C ratio of 0.47 indicates the existence of oxygenated functional groups; comparison to rural aerosol suggests that the (fresh) urban-type aerosol is less oxidized (and, therefore, less water soluble as well) than the rural one. The OM/OC mass conversion factor for the isolated (water-soluble) HULIS was derived to be 1.81. It was inferred from comparisons with published data that there are substantial differences in abundance and chemical composition of HULIS for different environments.  相似文献   

4.
Four heavy-duty diesel vehicles (HDDVs) in six retrofitted configurations (CRT®, V-SCRT®, Z-SCRT®, Horizon, DPX and CCRT®) and a baseline vehicle operating without after--treatment were tested under cruise (50 mph), transient UDDS and idle driving modes. As a continuation of the work by Biswas et al. [Biswas, S., Hu, S., Verma, V., Herner, J., Robertson, W.J., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced emission control technologies. Atmospheric Environment 42, 5622–5634.] on particle physical parameters, this paper focuses on PM chemical characteristics (Total carbon [TC], Elemental carbon [EC], Organic Carbon [OC], ions and water-soluble organic carbon [WSOC]) for cruise and UDDS cycles only. Size-resolved PM collected by MOUDI–Nano-MOUDI was analyzed for TC, EC and OC and ions (such as sulfate, nitrate, ammonium, potassium, sodium and phosphate), while Teflon coated glass fiber filters from a high volume sampler were extracted to determine WSOC. The introduction of retrofits reduced PM mass emissions over 90% in cruise and 95% in UDDS. Similarly, significant reductions in the emission of major chemical constituents (TC, OC and EC) were achieved. Sulfate dominated PM composition in vehicle configurations (V-SCRT®-UDDS, Z-SCRT®-Cruise, CRT® and DPX) with considerable nucleation mode and TC was predominant for configurations with less (Z-SCRT®-UDDS) or insignificant (CCRT®, Horizon) nucleation. The transient operation increases EC emissions, consistent with its higher accumulation PM mode content. In general, solubility of organic carbon is higher (average ~5 times) for retrofitted vehicles than the baseline vehicle. The retrofitted vehicles with catalyzed filters (DPX, CCRT®) had decreased OC solubility (WSOC/OC: 8–25%) unlike those with uncatalyzed filters (SCRT®s, Horizon; WSOC/OC  60–100%). Ammonium was present predominantly in the nucleation mode, indicating that ternary nucleation may be the responsible mechanism for formation of these particles.  相似文献   

5.
We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h?1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated (R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.  相似文献   

6.
Analyses of diurnal patterns of PM10 in Taipei City have been performed in this study at different daily ozone maximum concentrations (O3,max) from 1994 to 2003. In order to evaluate secondary aerosol formation at different ozone levels, CO was used as a tracer of primary aerosol, and O3,max was used as an index of photochemical activity. Results show that when O3,max exceeds 120 ppb, the highest photochemical formation of secondary aerosol can be found at 15:00 (local time). The produced secondary aerosol is estimated to contribute 30 μg m−3 (43%) of PM10 concentration, and about 77% of the estimated secondary PM10 is composed of PM2.5. The estimated maximum concentration of secondary aerosol occurs 2–3 h later than the maximum ozone concentration. As revealed in an O3 episode, PM10 and PM2.5 vary consistently with O3 at daytime, which suggests that they are mostly secondary aerosols produced from photochemical reactions. Data collected from Taipei aerosol supersite in 2002 indicates that for all O3 levels, summertime PM2.5 is composed of 23%, 20%, 9%, and 7% of organic carbon, sulfate, nitrate, and elemental carbon, respectively. Aerosol number and volume size spectra are dominated by submicron particles either from pollution transport or photochemical reactions. Secondary PM10 concentrations show increasing tendencies for the time between 15:00 and 19:00 from 1994–1996 to 2001–2003. This reveals that the abatement of secondary PM10 becomes more important after pronounced primary PM10 reduction in a metropolis.  相似文献   

7.
The emission rate of particle-phase petroleum biomarkers in vehicular exhaust compared to the concentrations of these biomarkers in ambient air is used to determine the particulate organic compound concentration due to primary particle emissions from motor vehicles in the southern California atmosphere. A material balance on the organic particulate matter emitted from motor vehicle traffic in a Los Angeles highway tunnel first is constructed to show the proportion which is solvent-extractable and which will elute from a GC column, the ratio of resolved to unresolved compound mass, the portion of the resolved material that can be identified as single organic compounds, and the contribution of different classes of organic compounds to the overall identified fraction. It is shown that the outdoor ambient concentrations of the petroleum biomarkers track primary emissions measured in the highway tunnel, confirming that direct emissions of these compounds from vehicles govern the observed ambient petroleum biomarker concentrations. Using organic chemical tracer techniques, the portion of fine organic particulate matter in the Los Angeles atmosphere which is attributable to direct particle emissions from vehicle exhaust is calculated to vary from 7.5 to 18.3% at different sites throughout the air basin during a summertime severe photochemical smog episode. A similar level of variation in the contribution of primary motor vehicle exhaust to fine particulate organic matter concentrations during different times of day is seen. While peak atmospheric concentrations of fine particulate organic carbon are observed during the 1200–1600 PDT afternoon sampling period, only 6.3% of that material is apportioned to the directly emitted particles from vehicle exhaust. During the morning traffic peak between 0600–1000 PDT, 19.1% of the fine particulate organic material is traced to primary emissions from motor vehicles.  相似文献   

8.
Carbon monoxide (CO) measurements have been performed in a forested site in central Greece in the framework of the AEROBIC (AEROsol formation from Biogenic Carbon) campaign in summer 1997. The mean CO observed during the whole campaign ranged between 114 and 250 ppbv (mean of 170±27 ppbv), reflecting continental influence. The observed mean diurnal cycle of CO presented a minimum in the early morning due to the efficient deposition of CO in a shallow nocturnal layer sealed from the free tropospheric air during the night (loss rates of about 2 ppbv h−1). In the early morning and in the late afternoon, a sharp and fluctuating increase of CO was observed as the consequence of CO primary sources, likely by local traffic as suggested by the concomitant enhancements of black carbon (BC) and other combustion tracers. The morning pollution peak (6:30–8:30 local time) preceded slightly the opening of the nocturnal layer to the free troposphere, which resulted in CO reduction down to background levels at about 10:00. During the day (10:00–17:00), a slight but regular increase was observed on CO levels. For lack of simultaneous increase of other anthropogenic tracers, this CO enhancement has been attributed to its photochemical formation initiated by the oxidation of reactive biogenic hydrocarbons. This observed net production of CO averaging 1.2 ppbv h−1 is quite well reproduced by a box model containing an explicit chemical scheme of isoprene and α- and β-pinene and taking into account the measured mixing ratios and the reactivity of all biogenic organic reactive compounds when uncertainties in measurements and modelling are considered.  相似文献   

9.
PM10 levels of the 16 US-EPA Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) were measured from March 17 to 31, 2003, in 8-h time bins (morning, afternoon and nighttime) at Merced, a source site dominated by vehicular traffic emissions near the center of Mexico City, and at Pedregal, a receptor area located downwind in a residential area of low traffic. Along with PAH, elemental (EC) and organic carbon (OC), mass, and prevailing meteorological parameters were measured. At the source location, measured concentrations of benzo[a]pyrene (BAP), an agent suspected of being carcinogenic to humans and of causing oxidative DNA damage, reached concentrations as high as 2.04 and 2.11 ng m?3 during the morning of a weekday and the night period of a holiday. Compared with source dominated areas in Central Los Angeles, the BAP levels found in Central Mexico City are approximately 6 times higher. Benzo[ghi]perylene (BGP) levels were, in general, the highest among the target PAH, both at the source (7.2 ng m?3) and the receptor site (2.8 ng m?3), suggesting that, at both locations, exhaust emission by light-duty (LD) vehicles is an important contributor to the atmospheric PAH burden. Higher PAH concentrations were observed during the morning period (5:00–13:00 h) at the source and the receptor site. The concentrations of PAHs found predominantly in the particle-phase (MW > 202) correlated well (r = 0.57–0.71) with the occurrence of surface thermal inversions and with mixing heights (r = ?0.57 to ?0.72). Organic and elemental carbon ratios also indicated that Pedregal is impacted by secondary aerosols during the afternoon hours.  相似文献   

10.
Sampling and analysis of carbonaceous compounds in particulate matter presents a number of difficulties related to artefacts during sampling and to the distinction between organic (OC) and elemental carbon (EC) during analysis. Our study reports on a comparative analysis of OC, EC and WSOC (water-soluble organic carbon) concentrations, as well as sampling artefacts, for PM2.5 aerosol in three European cities (Amsterdam, Barcelona and Ghent) representing Southern and Western European urban environments. Comparability of results was ensured by using a single system for sample analysis from the different sites. OC and EC concentrations were higher in the vicinity of roads, thus having higher levels in Amsterdam (3.9–6.7 and 1.7–1.9 μg m−3, respectively) and Barcelona (3.6–6.9 and 1.5–2.6 μg m−3) than in Ghent (2.7–5.4 and 0.8–1.2 μg m−3). A relatively larger influence of secondary organic aerosols (SOA), as deduced from a larger OC/EC ratio, was observed in Ghent. In absolute sense, WSOC concentrations were similar at the three sites (1.0–2.3 μg m−3). Positive artefacts were higher in Southern (11–16% of the OC concentration in Barcelona) than in Western Europe (5–12% in Amsterdam, 5–7% in Ghent). During special episodes, the contribution of carbonaceous aerosols from non-local sources accounted for 67–69% of the OC concentration in Western Europe, and for 44% in Southern Europe.  相似文献   

11.
Atmospheric particulate matter (PM) is an air-suspended mixture of solid and liquid particles that vary in size, shape, and chemical composition. Long-term exposure to elevated concentrations of fine atmospheric particles is considered to pose a health threat to humans and animals. In this context, it has been hypothesized that toxic chemicals such as polycyclic aromatic hydrocarbons (PAHs) play an important role. Some PAHs are known to be carcinogenic and it has been shown that carcinogenic effects of PAHs are mediated by the aryl hydrocarbon receptor (AhR). In this study, PM1 was collected at a rural and an urban traffic site during an intense winter smog period, in which concentration of PM1 often exceeded 50 μg m?3. We applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify PM1-associated chemicals that induce AhR-mediated gene expression. This activity was expressed as CALUX equivalents of 2,3,7,8-tetrachlorodibenzodioxin (PM-TCDD-CEQs). In addition, concentrations of PAHs in the PM1 extracts were determined using gas chromatography/high-resolution mass spectrometry. Concentrations of PM-TCDD-CEQs ranged from 10 to 85 pg m?3 and from 19 to 87 pg m?3 at the urban and rural site, respectively. By the use of known relative potency factors, the measured concentration of a PAH was converted into a PAH-TCDD-CEQ concentration. ΣPAH-TCDD-CEQ and PM-TCDD-CEQ were highly correlated at both sites (r2 = 0.90 and 0.69). The calculated ΣPAH-TCDD-CEQs explain between 2% and 20% of the measured PM-TCDD-CEQs. Benzo[k]fluoranthene was the most important PAH causing approximately 60% of the total ΣPAH-TCDD-CEQ activity. In contrast to NO, CO, PM10, and PM1, the concentration of PM-TCDD-CEQs showed no significant difference between the two sites. No indications were found that road traffic emissions caused elevated concentrations of PM-TCDD-CEQs at the urban traffic site.  相似文献   

12.
We use a global 3-D atmospheric chemistry model (GEOS-Chem) to simulate surface and aircraft measurements of organic carbon (OC) aerosol over eastern North America during summer 2004 (ICARTT aircraft campaign), with the goal of evaluating the potential importance of a new secondary organic aerosol (SOA) formation pathway via irreversible uptake of dicarbonyl gases (glyoxal and methylglyoxal) by aqueous particles. Both dicarbonyls are predominantly produced in the atmosphere by isoprene, with minor contributions from other biogenic and anthropogenic precursors. Dicarbonyl SOA formation is represented by a reactive uptake coefficient γ = 2.9 × 10?3 and takes place mainly in clouds. Surface measurements of OC aerosol at the IMPROVE network in the eastern U.S. average 2.2 ± 0.7 μg C m?3 for July–August 2004 with little regional structure. The corresponding model concentration is 2.8 ± 0.8 μg C m?3, also with little regional structure due to compensating spatial patterns of biogenic, anthropogenic, and fire contributions. Aircraft measurements of water-soluble organic carbon (WSOC) aerosol average 2.2 ± 1.2 μg C m?3 in the boundary layer (<2 km) and 0.9 ± 0.8 μg C m?3 in the free troposphere (2–6 km), consistent with the model (2.0 ± 1.2 μg C m?3 in the boundary layer and 1.1 ± 1.0 μg C m?3 in the free troposphere). Source attribution for the WSOC aerosol in the model boundary layer is 27% anthropogenic, 18% fire, 28% semi-volatile SOA, and 27% dicarbonyl SOA. In the free troposphere it is 13% anthropogenic, 37% fire, 23% semi-volatile SOA, and 27% dicarbonyl SOA. Inclusion of dicarbonyl SOA doubles the SOA contribution to WSOC aerosol at all altitudes. Observed and simulated correlations of WSOC aerosol with other chemical variables measured aboard the aircraft suggest a major SOA source in the free troposphere compatible with the dicarbonyl mechanism.  相似文献   

13.
Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone–diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone–diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.  相似文献   

14.
The influence of two intensive low-altitude atmospheric-dust intrusions on the activity levels of 137Cs and 40K as well as atmospheric particle matter (PM10) concentrations in the lower atmosphere of the Canary Islands are analysed here. These two events took place at the beginning of January 2002 and March 2004, respectively. 3D atmospheric back-trajectories indicated that the main source of dust material involved in the considered atmospheric intrusions came from NW Africa. A consequence of these dust intrusions was the major increase of PM10 concentrations in the lower atmosphere. Both episodes were characterised by having weekly averages of PM10 concentration surpassing 150 μg m−3, higher than the daily PM10 limit value established by the EC/1999/30 directive for PM10 from 2005. Similarly, during these two events, both 137Cs and 40K activities increased by a factor of 6 and 13 as well as 13 and 14, respectively, over the basal values calculated for each radionuclide and time period (0.59±0.02 and 0.88±0.07 μBq m−3 as well as 12±6 and 24±8 μBq m−3).  相似文献   

15.
Particulate matter (PM) less than 2.5 microm in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (>50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   

16.
Different monitoring parameters (PM mass concentrations, number–size distribution, black carbon, gaseous pollutants, and chemical composition, among others) are currently used in air quality studies. Urban aerosols are the result of several sources and atmospheric processes, which suggests that a single monitoring technique is insufficient to quantitatively evaluate all of them.This study assesses the suitability of a number of monitoring techniques (PM mass concentrations, number and size distribution of ultra-fine particles, levels of gaseous pollutants, and a complete chemical characterization of PM10 and PM2.5) by examining the response of those techniques to the different emission sources and/or atmospheric processes affecting an urban Mediterranean area (Barcelona, NE Spain).The results of this work reveal that the PM mass, the number concentration and the chemical composition give different, but complementary, information. Whereas the mineral matter, a key atmospheric aerosol component across the Mediterranean, is not properly quantitatively assessed by measuring sub-micrometric particles, the monitoring of the number concentration is indispensable to interpret the origin of specific aerosol episodes. Furthermore, the chemical composition yields very relevant information to deduce the causes of specific pollution episodes.The number concentration of ultra-fine particles in urban areas is strongly dependent upon vehicle exhaust emissions, which may cause adverse health impacts. Moreover, urban Mediterranean environments are favourable to produce nucleation-mode particles (<20 nm) with photochemical origin. In those cases, these particles are expected to be of high solubility and consequently their toxicity may differ from that of traffic-generated ultra-fine particles. Thus, the use of a single monitoring parameter to evaluate the health effects seems to be not enough.  相似文献   

17.
Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m?3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction.The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations (r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak (r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers can aid in identifying factors that influence personal exposures to PM2.5.  相似文献   

18.
The results from a year-long study of the organic composition of PM2.5 aerosol collected in a rural area influenced by a highway of Spain are reported. The lack of prior information related to the organic composition of PM2.5 aerosol in Spain, concretely in rural areas, led definition of the goals of this study. As a result, this work has been able to characterize the main organic components of atmospheric aerosols, including several compounds of SOA, and has conducted a multivariate analysis in order to assign sources of particulate matter. A total of 89 samples were taken between April 2004 and April 2005 using a high-volume sampler. Features and abundance of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and acids were separately determined using gas chromatography/mass spectrometry and high performance liquid chromatography analysis. The Σn-alkane and ΣPAHs ranged from 3 to 81 ng m?3 and 0.1 to 6 ng m?3 respectively, with higher concentrations during colder months. Ambient concentrations of Σalcohols and Σacids ranged from 21 to 184 ng m?3 and 39 to 733 ng m?3, respectively. Also, several components of secondary organic aerosol have been quantified, confirming the biogenic contribution to ambient aerosol. In addition, factor analysis was used to reveal origin of organic compounds associated to particulate matter. Eight factors were extracted accounting more than 83% of the variability in the original data. These factors were assigned to a typical high pollution episode by anthropogenic particles, crustal material, plant waxes, fossil fuel combustion, temperature, microbiological emissions, SOA and dispersion of pollutants by wind action. Finally, a cluster analysis was used to compare the organic composition between the four seasons.  相似文献   

19.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5–10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5–10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.  相似文献   

20.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号