首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

2.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

3.
This study examined the indoor concentrations of a wide range of volatile organic compounds (VOCs) in currently built new apartments every month over a 24-month period and the source characteristics of indoor VOCs. The indoor total VOC (TVOC) concentrations exhibited a decreasing tendency over the 24-month follow-up period. Similar to TVOCs, the median indoor concentrations of 33 of 40 individual VOCs (all except for naphthalene and six halogenated VOCs) revealed decreasing tendencies. In contrast, the indoor concentrations of the six halogenated VOCs did not reveal any definite trend with time. Moreover, the indoor concentrations of those halogenated VOCs were similar to the outdoor concentrations, suggesting the absence of any notable indoor sources of halogenated VOCs. For naphthalene (NT), the indoor concentrations were significantly higher than the outdoor concentrations, suggesting the presence of indoor NT source(s). The floor/wall coverings (39 %) were the most influential indoor source of indoor VOCs, followed by household cleaning products (32 %), wood paneling/furniture (17 %), paints (7 %), and moth repellents (5 %).  相似文献   

4.
Shin SH  Jo WK 《Chemosphere》2012,89(5):569-578
The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m−2 h−1. The target compounds with median emission rates greater than 20 μg m−2 h−1 were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints.  相似文献   

5.
PAHs and PCBs were collected simultaneously indoors and outdoors at eight non-smoking homes located in four buildings in high-traffic areas of Rome. The purpose was to evaluate the relevance of indoor air in contributing to the overall exposure of the urban population. The vertical distribution was also investigated by collecting outdoor samples at both road and roof level, and indoor samples in both a high and a low floor flat of each building. At one coal-heated building, samples were collected during both the heating and the non-heating season. No evident PAH source was present indoors. Indoor and outdoor daily concentrations of benzo[a]pyrene (BaP) ranged, respectively, 0.1–4.6 ng m−3 and 0.7–2.3 ng m−3. With the heating on, indoor PAH concentrations equalled or exceeded those outdoors, with BaP indoor/outdoor ratios up to 4; during the warm season, ratios decreased to 0.2–0.6. Indoor PAHs at the low floors exceeded the high-floor ones when the heating was off (vehicle exhausts being the dominant source), while being equal or lower with the heating on; the vertical gradient of indoor PAHs between different floors was within a factor of 2. Outdoor PAHs at roof level were 20–70% of those at road level, which in turn exceeded those at the medium-traffic station up to a factor of 4. The outdoor concentrations of Σ6 indicator PCBs ranged 0.1–1.6 ng m−3. Indoor PCB concentrations exceeded those outdoors by an approximate factor of 2–50. No vertical gradient was observed. The results indicated that indoor air may contribute to the overall exposure to PAHs and PCBs more than the urban air. They were also consistent with recent findings suggesting that indoor air can be a relevant source of PCBs for outdoor air.  相似文献   

6.
The fluorotelomer alcohols (FTOHs) have been detected in various environmental compartments, including indoor and outdoor air, in North America and Europe. In our previous studies, FTOHs were detected at a relative higher concentration in outdoor air in the Keihan (Kyoto–Osaka, one of the major industrial zones) area, Japan compared to reported data. The exposure level of FTOHs in indoor air in the Keihan area remains unclear. In the present study, indoor air FTOH concentrations were investigated using a passive air sampler containing activated carbon felts. The indoor air sampling was conducted in 49 households of the Keihan area, during winter and summer 2008. Most samples contained 6:2 FTOH, 8:2 FTOH, 10:2 FTOH and 8:2 FTOAc. The median concentration of 8:2 FTOH (5.84 ng m?3) was highest among fluorotelomers, followed by those of 10:2 FTOH (1.12 ng m?3), 6:2 FTOH (0.29 ng m?3), and others. Significant correlations among fluorotelomers were observed in collected samples. The association between housing conditions and 8:2 FTOH concentrations showed that samples collected from bed rooms have higher 8:2 FTOH concentrations than those collected from other locations. In addition, samples collected in winter showed lower levels of 8:2 FTOH than those collected in summer. These findings suggest that 8:2 FTOH is the predominant component among fluorotelomers in indoor air, and that there are emission sources of fluorotelomers in indoor environments of the Keihan area. Further investigations into the origins of fluorotelomers are needed to evaluate indoor contamination with fluorotelomers.  相似文献   

7.
Jo WK  Kim JD 《Chemosphere》2010,81(10):1272-1279
The present study measured the levels of 24 selected volatile organic compounds (VOCs) in the personal air samples obtained from graduate students attending the college of natural sciences (GSNSs) or social science (GSSSs) during their daily activities on campus along with associated indoor and outdoor air samples. In addition, the sources of their personal exposure were characterized using multivariate statistical models. In the personal samples of GSNSs and GSSSs, 16 and 15 different VOCs were always detected, respectively. The personal exposure of five chlorinated hydrocarbons and six aromatics was significantly higher for GSNSs than for GSSSs. Consistently, the indoor levels of these compounds were higher for GSNSs (in research and laboratory rooms) than for GSSSs (in research rooms). However, the personal exposure of two aromatic VOCs (1,2,4- and 1,3,5-trimethylbenzene) was higher for GSSSs. Moreover, the personal exposure of the five chlorinated and six aromatic compounds was significantly correlated with VOC concentrations both in the research and laboratory rooms of GSNSs and with those in the research rooms of GSSSs. For certain VOCs, outdoor sources were also a major contributor to the personal exposure of both GSNSs and GSSSs. The multivariate models identified five factors that accounted for 81% of the total variance and four factors that explained 76% of the total variance. It was further suggested that multiple indoor sources in research rooms such as office equipment, building finishing materials, and air fresheners were the main source for the personal exposure to VOCs for GSNSs, whereas building finishing materials were the main source for GSSSs.  相似文献   

8.
This study investigates the volatile organic compounds (VOCs) constituents and concentration levels on a new university campus, where all of the buildings including classrooms and student dormitories were newly built and decorated within 1 year. Investigated indoor environments include dormitories, classrooms, and the library. About 30 dormitory buildings with different furniture loading ratios were measured. The characteristics of the indoor VOCs species are analyzed and possible sources are identified. The VOCs were analyzed with gas chromatography–mass spectroscopy (GC-MS). It was found that the average total VOC (TVOC) concentration can reach 2.44 mg/m3. Alkenes were the most abundant VOCs in dormitory rooms, contributing up to 86.5% of the total VOCs concentration. The concentration of α-pinene is the highest among the alkenes. Unlike the dormitory rooms, there is almost no room with TVOC concentration above 0.6 mg/m3 in classroom and library buildings. Formaldehyde concentration in the dormitory rooms increased about 23.7% after the installation of furniture, and the highest level reached 0.068 mg/m3. Ammonia released from the building antifreeze material results in an average indoor concentration of 0.28 mg/m3, which is 100% over the threshold and should be seriously considered. Further experiments were conducted to analyze the source of the α-pinene and some alkanes in dormitory rooms. The results showed that the α-pinene mainly comes from the bed boards, while the wardrobes are the main sources of alkanes. The contribution of the pinewood bed boards to the α-pinene and TVOC concentration can reach up to above 90%. The same type rooms were sampled 1 year later and the decay rate of α-pinene is quite high, close to 100%, so that it almost cannot be detected in the sampled rooms.

Implications: Analysis of indoor volatile organic compounds (VOCs) in newly built campus buildings in China identified the specific constituents of indoor VOCs contaminants exposed to Chinese college students. The main detected substances α-pinene, β-pinene, and 3-carene originated from solid wood bed boards and should be seriously considered. In addition, the contribution rates of building structure materials and furniture to specific VOCs constituents are quantitative calculated. Also, the decay rates of these specific constituents within 1 year are also quantitative calculated in this paper. This study can help us to better understand the sources and concentration levels of VOC contaminants in campus buildings, and to help select appropriate materials in buildings.  相似文献   


9.
The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

10.
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children’s Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan.Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10–15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO2 concentrations were typically higher than indoor NO2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS.These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.  相似文献   

11.
Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject’s movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM2.5 average was higher (55.7 μg m?3) than the outdoor value (49.8 μg m?3). The highest 5-min PM2.5 average concentration was detected in restaurant microenvironments (1103 μg m?3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m?3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m?3) and indoors at the monitored person’s home (36 μg m?3). Outdoor and indoor concentrations of PM2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject’s home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.  相似文献   

12.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

13.
Vehicle emissions can constitute a major share of ambient concentrations of many volatile organic compounds (VOCs) and other air pollutants in urban areas. Especially high concentrations may occur at curbsides, vehicle cabins, and other microenvironments. Such levels are not reflected by monitoring at fixed sites. This study reports on measurements of VOCs made from buses and cars in Detroit, MI. A total of 74 adsorbent tube samples were collected on 40 trips and analyzed by GC-MS for 77 target compounds. Three bus routes, selected to include residential, commercial and heavily industrialized areas, were sampled simultaneously on four sequential weeks during morning and afternoon rush hour periods. Nineteen compounds were regularly detected and quantified, the most prevalent of which included hexane/2-methyl pentane (15.6±5.8 μg m−3), toluene (10.2±7.9 μg m−3), m,p-xylene (6.8±4.7 μg m−3), benzene (4.5±3.0 μg m−3), 1,2,4-trimethylbenzene (4.0±2.6 μg m−3), o-xylene (2.2±1.6 μg m−3), and ethylbenzene (2.1±1.5 μg m−3). VOC levels in bus interiors and outdoor levels along the roadway were similar. Despite the presence of large industrial sources, route-to-route variation was small, but temporal variation was large and statistically significant. VOC compositions and trends indicate the dominance of vehicle sources over the many industrial sources in Detroit with the possible exceptions of styrene and several chlorinated VOCs. In-bus levels exceeded concentrations at fixed site monitors by a factor of 2–4. VOC concentrations in Detroit traffic are generally comparable to levels measured elsewhere in the US and Canada, but considerably lower than measured in Asia and Europe.  相似文献   

14.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

15.
Personal exposures and microenvironmental concentrations of benzene were measured in the residential indoor, residential outdoor and workplace environments for 201 participants in Helsinki, Finland, as a component of the EXPOLIS-Helsinki study. Median benzene personal exposures were 2.47 (arithmetic standard deviation (ASD)=1.62) μg m−3 for non-smokers, 2.89 (ASD=3.26) μg m−3 for those exposed to environmental tobacco smoke in any microenvironment and 3.08 (ASD=10.04) μg m−3 for active smokers. Median residential indoor benzene concentrations were 3.14 (ASD=1.51) μg m−3 and 1.87 (ASD=1.93) μg m−3 for environments with and without tobacco smoke, respectively. Median residential outdoor benzene concentrations were 1.51 (ASD=1.11) μg m−3 and median workplace benzene concentrations were 3.58 (ASD=1.96) μg m−3 and 2.13 (ASD=1.49) μg m−3 for environments with and without tobacco smoke, respectively. Multiple step-wise regression identified indoor benzene concentrations as the strongest predictor for personal benzene exposures of those not exposed to tobacco smoke, followed sequentially by time spent in a car, time in the indoor environment, indoor workplace concentrations and time in the home workshop. Relationships between indoor and outdoor microenvironment concentrations and personal exposures showed considerable variation between seasons, due to differences in ventilation patterns of homes in these northern latitudes. Automobile use-related activities were significantly associated with elevated benzene levels in personal and indoor measurements when tobacco smoke was not present, which demonstrates the importance of personal measurements in the assessment of exposure to benzene.  相似文献   

16.
Thirty target volatile organic compounds (VOC) were analyzed in personal 48-h exposure samples and residential indoor, residential outdoor and workplace indoor microenvironment samples as a component of EXPOLIS-Helsinki, Finland. Geometric mean residential indoor concentrations were higher than geometric mean residential outdoor concentrations for all target compounds except hexane, which was detected in 40% of residential outdoor samples and 11% of residential indoor samples, respectively. Geometric mean residential indoor concentrations were significantly higher than personal exposure concentrations, which in turn were significantly higher than workplace concentrations for compounds that had strong residential indoor sources (d-limonene, alpha pinene, 3-carene, hexanal, 2-methyl-1-propanol and 1-butanol). 40% of participants in EXPOLIS-Helsinki reported personal exposure to environmental tobacco smoke (ETS). Participants in Helsinki that were exposed to ETS at any time during the 48-h sampling period had significantly higher personal exposures to benzene, toluene, styrene, m,p-xylene, o-xylene, ethylbenzene and trimethylbenzene. Geometric mean ETS-free workplace concentrations were higher than ETS-free personal exposure concentrations for styrene, hexane and cyclohexane. Geometric mean personal exposures of participants not exposed to ETS were approximately equivalent to time weighted ETS-free indoor and workplace concentrations, except for octanal and compounds associated with traffic, which showed higher geometric mean personal exposure concentrations than any microenvironment (o-xylene, ethylbenzene,benzene, undecane, nonane, decane, m,p-xylene, and trimethylbenzene). Considerable differences in personal exposure concentrations and residential levels of compounds with mainly indoor sources suggested differences in product types or the frequency of product use between Helsinki, Germany and the United States.  相似文献   

17.
A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO2 generation rates were 0.0068–0.0092 l s−1. The per occupant isoprene generation rates of 0.2–0.3 mg h−1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source control measures, in addition to adequate ventilation, are required to limit concentrations of VOCs in office buildings.  相似文献   

18.
Indoor and outdoor particulate matter (PM0.3-10) number concentrations were established in two medieval churches in Cyprus. In both churches incense was burnt occasionally during Mass. The highest indoor PM0.5-1 concentrations compared with outdoors (10.7 times higher) were observed in the church that burning of candles indoors was allowed. Peak indoor black carbon concentration was 6.8 μg m−3 in the instances that incense was burning and 13.4 μg m−3 in the instances that the candles were burning (outdoor levels ranged between 0.6 and 1.3 μg m−3). From the water soluble inorganic components determined in PM10, calcium prevailed in all samples indoors or outdoors, whilst high potassium concentration indoors were a clear marker of combustion. Indoor sources of PM were clearly identified and their emission strengths were estimated via modeling of the results. Indoor estimated PM0.3-10 mass concentrations exceeded air quality standards for human health protection and for the preservation of works of art.  相似文献   

19.
Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi’an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m−3 in Xi’an to a high of 92.8 μg m−3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h−1 in summer and 1.98 mg h−1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.  相似文献   

20.
Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号