首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented for pH, nitrate and sulfate ion content of cloud water collected at Whiteface Mountain in northern New York. Evidence exists for the production of sulfate in possibly one of the case studies and for nitrate production in all three of the case studies examined. The results are not entirely consistent with the hypothesis that chemical modification of cloud condensation nuclei (CCN) takes place in stratiform clouds. For only one case is CCN production evident and total aerosol number concentration is enhanced.The measured nitrate production cannot be accounted for by the soluble fraction of the CCN aerosol and may result from the absorption of interstitial HNO3(g). This might account for the change in cloud condensation nuclei, indicated by the results, when sulfate production was not evident. The CCN spectrum can also be altered by agglomeration of captured particles upon cloud droplet evaporation. It is not possible to separate the two mechanisms (chemical vs physical) at this time.  相似文献   

2.
During January and February 1984, a field project was conducted near North Bay, Ontario, Canada. The principal objective was to characterize the chemical and microphysical properties of the air masses, clouds and precipitation in this region of NE North America during the winter season. Two extensively instrumented aircraft with some newly designed cloudwater and snow collectors were used, as well as a surface station continuously monitoring pollutant concentrations and a precipitation event sampling network. Pollutant concentrations at the surface were found to vary with the airmass back trajectory with the highest concentrations observed for trajectories from the S and SW and the lowest from the N. Vertical profiles of aerosol particle (0.2−2 μm diameter) and NOx concentrations show similar trends with maxima of 1200 cm−3 and 7 ppb, respectively near ground level with air mass trajectories from the S, in comparison to values of 250 cm−3 and 1 ppb obtained with trajectories from the N. Cloudwater, aircraft precipitation and ground precipitation samples had a daily median pH of 3.6,4.6 and 4.2, respectively with the cloudwater having the highest sulphate and nitrate concentrations. The nitrate/sulphate equivalent concentration ratios in the cloudwater, aircraft precipitation and ground precipitation samples were 0.7,0.6 and 1.4, respectively. The data suggest that precipitation scavenging of nitric acid below cloud base is an important process during the winter season.  相似文献   

3.
Meteorological trajectory analysis, MAP3S precipitation chemistry data, and hourly precipitation data at Whiteface Mountain (WFM) were used to determine the source direction of sulfate deposited in precipitation for 1978. A sensitivity study was done on source direction from different trajectory models, using different transport layers, and different precipitation information to determine the time deposition occurred. Results obtained from the different precipitation information indicate that precipitation data in 6-h increments or less are essential to correctly identify the trajectories associated with the wet deposition. Bias resulted when trajectories were not only associated with wet deposition. The direction of source regions, defined by 30° sectors, was much less dependent on the trajectory model or transport layer. Results suggest that over one-third of the wet sulfate deposition at WFM in 1978 arrived from the west-southwest, passing through the eastern Great Lakes region.  相似文献   

4.
5.
A continuous, 19-year record (1963–1982) of weekly, bulk precipitation chemistry at the Hubbard Brook Experimental Forest in West Thornton, New Hampshire shows no statistically significant trend in annual volume-weighted concentrations of hydrogen ion and nitrate, but a 34% decrease in sulfate, a 34% decrease in ammonium, a 63% decrease in chloride, a 79% decrease in magnesium and an 86% decrease in calcium during the period. Nitrate concentrations increased from 1964 to 1971 and H-ion concentrations decreased after 1970. Frequency distributions of the concentrations of the chemical components of precipitation are skewed. The range of H-ion concentrations in weekly samples has narrowed, and the frequency distribution has shifted toward higher concentrations (lower pH) during the last 19 years. Highest concentrations generally occur with lowest amounts of precipitation for most ions, but low concentrations can occur with either low or high amounts of precipitation. Time trends in deposition generally parallel trends in concentration over the 19-year period. Chemical deposition generally increases with increasing amount of precipitation in weekly samples.  相似文献   

6.
The air in the city of Schenectady, NY was sampled daily and analyzed for the presence of low molecular weight aldehydes during the months of June–August 1983. The diurnal variation of the aldehyde concentrations was also determined over a two day period during August. The dominant aldehyde was formaldehyde and its concentration varied from about 1–31 ppb. There was also observed a significant daily variation that appeared to correlate with traffic conditions. The technique was also used to monitor the aldehyde levels on the summit of Whiteface Mountain in Wilmington, NY at the SUNYA Atmospheric Sciences Research Center. The monitoring was done on a daily basis during the week of 14–20 August and, during that week, every 3 h for a 3-day period. The two dominant aldehydes were formaldehyde and acetaldehyde and they varied in concentration from about 0.8–2.6 and 0.2–0.8 ppb, respectively.  相似文献   

7.
Total paniculate sulfur (TPS) in air samples can be determined by a technique based on thermal volatilization at 1000°C, followed by controlled oxidation of sulfur compounds to SO2 and coulometric titration of SO2 with iodine. Calibration curves are linear within 5% from 0.1 to 10 μgS, the detection limit is 0.10μg S (equivalent to 20ng Sm−3 when ~ 1800m3 of air are filtered), and the relative standard deviations (n = 10) are 48 and 5.1% at the 0.10 and 4.0 μgS levels. Recoveries for 20 organic and inorganic compounds, including refractory sulfates, elemental sulfur, sulfides, sulfites, sulfonates and sulfones, vary from 79 to 88%. No interferences are observed for a number of non-sulfur-containing compounds, including nitrates, benzene, acetone, glucose, cellulose, silicates and carbonates. The technique was also used to determine the presence of non-sulfates and of non-water-soluble sulfates. Both TPS, using this technique, and water-soluble sulfate (WSS), using the methyl thymol blue method, were determined in daily air particulate samples collected at Whiteface Mountain, NY during both winter and summer. Comparision of TPS and WSS values showed that WSS could usually account for all of the sulfur present in the samples. The TPS concentrations ranged from 0.1 to 9.7μg Sm−3 and the contribution from acid-soluble sulfites and sulfides, elemental sulfur and volatile, S-containing organic compounds was negligible ( < 0.05 μgS m−3).  相似文献   

8.
Observational and numerical investigations of cumulus cloud scavenging, transport and chemical processes are presented. The experimental data set includes surface and aircraft measurements of the chemistry and microphysics of aerosol, cloud and precipitation. To help in the interpretation of these experimental data fully three-dimensional simulations of cloud chemistry and scavenging are performed. After adjusting several unmeasured model parameters, reasonable agreement could be obtained between the simulated and observed cloud chemistry and aerosol distribution in clouds. The rate at which the simulated clouds transported and transformed pollutants did not exceed a few per cent per hour.  相似文献   

9.
A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets.Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloud water due to nucleophilic addition of HSO3 to HCHO(aq) to form hydroxymethanesulfonate (HMSA) is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.  相似文献   

10.
During 1993–97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity, sulfate, and nitrate), (2) soil (calcium, magnesium, and potassium), and (3) salt (sodium, chloride, and ammonium). Concentrations of acid solutes in the snowpack are similar to concentrations in nearby wetfall collectors, whereas, concentrations of soil solutes are much higher in the snowpack than in wetfall. Thus, dryfall of acid solutes during the snow season is negligible, as is gypsum from soils. Snowpack sampling offers a cost-effective complement to sampling of wetfall in areas where wetfall is difficult to sample and where the snowpack accumulates throughout the winter.  相似文献   

11.
Bulk precipitation samples were collected at Montseny (Catalonia, NE Spain) from 1983 to 1994 and analysed for major cations and anions. The samples were classified for provenance based on meteorological synoptic maps and back trajectory analysis to identify the source areas of pollutants in precipitation. The meteorological classification was compared to an independent grouping based on multivariate data analysis (Clustering and Principal Component Analysis). Alkaline rain (mean pH=7.2) was associated to African trajectories. Local events produced neutral rains (mean pH=5.5). Acid rain was associated to rains of Atlantic origin (mean pH=4.8) and to European rains (mean pH=4.4), which also presented the highest mean concentrations of NH+4 (57 μeq -1), NO-3(49 μeq -1) and SO2-4(103 μeq -1). However, European events were only a small fraction of the total precipitation (10% of the cases). Marine rains accounted for 52% of the events, and African and Local for 20 and 18%, respectively. During the 11 year period there was a decreasing trend for the frequency of European events.  相似文献   

12.
Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition.  相似文献   

13.
14.
In the Retezat Mountains concentrations of O3, NO2 and SO2 in summer season 2000-2002 were low and below toxicity levels for forest trees. While NH3 concentrations were low in 2000, the 2001 and 2002 concentrations were elevated indicating possibility for increased N deposition to forest stands. More than 90% of the rain events were acidic with pH values <5.5, contributing to increased acidity of soils. Crown condition of Norway spruce (Picea abies) and European beech (Fagus sylvatica) was good, however, defoliation described as >25% of foliage injured increased from 9.1% in 2000 to 16.1% in 2002. Drought that occurred in the southern Carpathians between fall 2000 and summer 2002 and frequent acidic rainfalls could cause the observed decline of forest condition. Both Norway spruce and European beech with higher defoliation had lower annual radial increments compared to the trees with low defoliation. Ambient O3 levels found in the Retezat did not affect crown condition of Norway spruce or European beech.  相似文献   

15.
16.
A Seasonal Kendall Trend (SKT) test was applied to precipitation-weighted concentration data from 164 National Atmospheric Deposition Program National Trends Network (NADP/NTN) sites operational from 1985 to 2002. Analyses were performed on concentrations of ammonium, sulfate, nitrate, dissolved inorganic nitrogen (DIN, sum of nitrogen from nitrate and ammonium), and earth crustal cations (ECC, sum of calcium, magnesium, and potassium). Over the 18-year period, statistically significant (p< or =0.10) increases in ammonium concentrations occurred at 93 sites (58%), while just three sites had statistically significant ammonium decreases. Central and northern Midwestern states had the largest ammonium increases. The generally higher ammonium concentrations were accompanied by significant sulfate decreases (139 sites, 85%), and only one significant increase which occurred in Texas. In the west central United States there were significant nitrate increases (45 sites, 27%), while in the northeastern United States there were significant decreases (25 sites, 15%). Significant DIN decreases were observed in the northeastern United States (11 sites, 7%); elsewhere there were significant increases at 75 sites (46%). ECC decreased significantly at 65 sites (40%), predominantly in the central and southern United States, and increased at 11 sites (7%). The concentrations of sulfate, nitrate, and ammonium in precipitation have changed markedly over the time period studied. Such trends indicate changes in the mix of gases and particles scavenged by precipitation, possibly reflecting changes in emissions, atmospheric chemical transformations, and weather patterns.  相似文献   

17.
A multiple regression model is introduced to describe temporal variations in precipitation chemistry data. The model considers the effects of the annual cycle, a linear trend and precipitation-quantity simultaneously. The paper discusses the application of the model to concentrations and depositions of hydronium, ammonium, nitrate and sulfate for monthly bulk samples in The Netherlands for the period 1978–1984.Statistical conclusions about the annual cycle and the trend are hardly influenced by the choice of the dependent variable (depositions, concentrations or logarithms of concentrations). With the exception of H+ concentrations, a large part of the temporal variations was due to precipitation-quantity effects. Significant annual cycles were found for nitrate, ammonium and sulfate. There was statistical evidence of a downward trend for sulfate and nitrate. A complex, non-linear trend was observed for H+ which resulted in a significant autocorrelation of the residuals from the regression equation.Much attention is paid to the detectability of trend. For ammonium, nitrate and sulfate it is possible to discriminate small systematic changes in quite short records (a mean annual change of 4–6% in a 5-year record). This is not the case for H +, because temporal variations of this component are insufficiently explained by the systematic annual cycle and precipitation-quantity.  相似文献   

18.
The chemical compositions of precipitation show temporal and spatial variability. It is important to determine the temporal variation of the chemical composition of rainwater for estimating the impacts of pollutants on the forest. In this study, the 34 rainwater samples are collected using, for the first time, the specially designed collectors between November 1997 and March 1998 in Istanbul University, Faculty of Forestry at Bahcekoy, Istanbul in Belgrad Forest. The sequentially collected samples are analysed for major ions concentrations and pH estimations. The pH values for all samples vary from 5.1-7.6. In general, the concentration of all rainwater samples decrease with time. Furthermore, it is estimated that the average Ca2+) (1943.0 µeql-1) and SO42- (887.3 µeql-1) concentrations are extremely high during the first ten minutes of the precipitation event.  相似文献   

19.
On 100 occasions over a 3-y period ( June 1975 to July 1978 inclusive), precipitation collected at the Hubbard Brook Experimental Forest was analyzed for its chemical constituents. The present paper is a meteorological examination of the data, using back trajectories based on a quasi-geostrophic method.Some of the trajectories are complex and difficult to interpret. When these are excluded, the remaining 69 events show the influence of meteorology on wet deposition at Hubbard Brook. Highest values of H+, SO4 and NO3 are associated with winds from the SSE through SSW, and with looping trajectories over New England. In contrast, air that has come from the NNW-NE-ESE sector is relatively clean. These results are confirmed using a crossing-trajectory analysis.A method of trend analysis for SO4 concentrations is suggested, using crossing-trajectory statistics and a simple linear chemistry model. The sample period (3 y) is too short to provide a fair test of the method. Nevertheless, the results obtained are not unreasonable, namely a downward trend of 7% in SO4 concentrations, when the data are normalized for meteorological factors, as compared with a decrease of 5 % in regional emissions of SO2 over the same period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号