首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Instantaneous releases of sulfur hexafluoride tracer were carried out as part of the Joint Urban 2003 field campaign in Oklahoma City. Data from 10 fast-response tracer samplers were used to examine the crosswind and along-wind spread of the tracer, the decay of tracer concentrations, and the retention of tracer within approximately 1 km of the release locations. The time variation of the median values of the tracer concentrations, normalized by the peak value observed at a given sampler, could be approximately described by an exponential decay with characteristic decay times on the order of 1–2 min. The longer times were found for early morning releases and the shorter times were associated with later morning or afternoon releases, suggesting that atmospheric stability or the depth of the mixed layer may affect puff dispersion even in urban environments. The median retention times required for 99% of the exposure to be realized at a given location were found to be correlated reasonably well with the median decay times. These characteristic time scales should be regarded as lower limits for concentration decay because the analysis excluded a number of anomalous cases in which the decaying concentrations exhibited an extended tail that indicated a very slow ventilation rate. The median values of the along-wind dispersion parameter σx grouped into downwind distance ranges can be described by a linear variation with distance with an initial “hold up” contribution due to building effects of about 30–45 m, but there are considerable variations about this relationship. Downwind 0.5–1 km from the release point the lateral puff dispersion (σy) was roughly 70% of the along-wind dispersion.  相似文献   

2.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

3.
The dispersion of VOCs emitted by a municipal solid waste landfill was studied for a period of over one year. Sixteen VOCs were monitored: linear alkanes from C7 to C11, BTEX, trimethylbenzene, trichlorethylene, tetrachlorethylene, α and β-pinenes, limonene. The analytical procedure was first comprised of static long-term sampling of about 2 months using radial diffusion Radiello tubes containing activated carbon, followed by extraction by solvent (i.e. CS2) and GC/MS analysis. The results were initially analysed on the basis of the total concentration of the quantified VOCs, then by examining the concentrations of certain selected compounds. The influence of different parameters such as operating conditions, meteorological conditions and site morphology was highlighted on the basis of total VOC concentrations. In order to study the VOC's dispersion more closely, 5 compounds were chosen: toluene, benzene, limonene, and the sum trichlorethylene + tetrachlorethylene, as a “marker”, to verify the origin of the VOCs emitted. The results showed that the main source of VOCs is the open cell and lead to different hypotheses on interferences from neighbouring sources and to the proposal of solutions to limit the emission of VOCs and their dispersion. To our knowledge, this type of study has not been accomplished until this day.  相似文献   

4.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study the spatial and temporal variabilities and to explore the significance of averaging effects inherent to 24 h-sampling. Measurement uncertainty was quantified on basis of three independent side-by-side samplers, deployed at one of the sites.PAH abundances in the urban and rural environments differed largely. Levels at the urban sites exceeded the levels at the rural site by >100%. The discrepancy was largely dominated by emission of 3–4 ring PAHs in the city, while 5–6 ring PAHs were more evenly distributed between city sites and the hill site. During the night a higher fraction of the semivolatile PAHs might have been stored in the soil or sorbed to surfaces. PAH patterns were undistinguishable across the three sites. However, concentrations of more particle-associated substances differed significantly between the urban sites than between one of the urban sites and the rural site (3σ uncertainty). Time-averaging (on a 24 h-basis) would have masked the significant inter-site differences of half of the substances which were found at different levels (on a 4 h-basis).  相似文献   

6.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

7.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

8.
In this paper, results on a PM10 daytime–nighttime measurement campaign carried out in Milan to study the evolution of PM10 concentration and composition in relation to atmospheric dispersion conditions are shown. To account for the evolution of atmospheric dispersion conditions, Radon hourly concentration measurements were performed. The significant correlation between PM10 and 222Rn daytime concentrations evidences the dominant role of atmospheric dispersion in determining the temporal variation of PM10 levels. Whenever 222Rn concentrations accumulate during the night (indicating the formation of nocturnal atmospheric stability conditions), PM10 concentrations are higher than those registered during the daytime before, despite a decrease in emissions from active sources. On the contrary, when 222Rn concentrations do not accumulate during night hours, PM10 levels are lower than those measured during the daytime before.As concerns the average elemental concentrations (in ng m−3), the nighttime–daytime variations are in the range −17% to +37%; during the night, soil-related elements (Al, Si, Ca, Ti) decrease while anthropogenic elements (Zn, Cu, Fe, Pb) increase.A case study concerning a ‘green’ Sunday (when traffic was forbidden from 8 a.m. to 8 p.m.) is also discussed. The difference of PM10 concentration and elemental composition registered during the ‘green’ Sunday daytime and the following nighttime, together with the information on atmospheric dilution power obtained by Radon measurements, allowed the characterisation of the traffic source elemental profile and increased the comprehension of the low effectiveness of some PM10 reduction strategies.  相似文献   

9.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   

10.
Atmospheric deposition of lead (Pb), zinc (Zn) and cadmium (Cd) was investigated near the former Black Angel Pb–Zn mine in Maarmorilik, West Greenland during 2010–2011. Thalli of the lichen Flavocetraria nivalis were transplanted from an uncontaminated site into sites near the mine and collected the following year. At 20 of the total 21 sites, concentrations of Pb, Zn and Cd were significantly elevated in lichens after 1 year of transplantation compared to initial concentrations. Elevated concentrations were observed within a distance of approx. 20 km from the mining area. Concentrations decreased with increasing distance from the mine and the relation was well described using a power function with a negative exponent (r2 = 0.90; 0.83 and 0.83 for Pb; Zn and Cd). To examine the relation between metal concentrations/uptake in lichen transplants and atmospheric bulk deposition, 10 Bergerhoff dust samplers were placed near lichen transplants and samplers and lichens were collected after a 7-weeks exposure period. A significant linear correlation was observed between metal concentrations in lichen transplants and atmospheric bulk metal deposition (r2 = 0.94; 0.88 and 0.89 for Pb; Zn and Cd). Combining the results and including an area distribution within a defined metal deposition area, the “annual” deposition of Pb, Zn and Cd as dust was estimated during the 2010–2011 snow-free period (~5 months). The results reveal that 20 years after mine closure, 770 kg Pb, 3700 kg Zn and 24 kg Cd were still being deposited as dust per year (snow-free period only) within a distance of 20 km from the mine.  相似文献   

11.
《Chemosphere》2013,93(6):1182-1188
Fullerene is one of the nanocarbons that is expected to have applications to life science, such as nanomedicines. An understanding of the cellular influences of fullerene is essential for its application to life science. Although C60 and C70 are both known as major fullerenes, most previous reports about the cellular influences of fullerene are about C60. Thus we evaluated the cellular influences caused by C70. A stable and uniform C70-medium dispersion was prepared. The dispersion was stable for the experimental period. Mitochondrial activity (MTT assay), colony forming ability (clonogenic assay), induction of oxidative stress (intracellular ROS and lipid peroxidation levels) and cellular uptake (TEM observation) in human keratinocyte HaCaT and lung carcinoma A549 cells exposed to C70 were examined. C70 did not influence mitochondrial activity. On the other hand, C70 dispersion inhibited colony formation at the concentration of 25.2 μg mL−1. Exposure to C70 dispersion caused an increase in intracellular ROS and lipid peroxidation levels. The induction of intracellular ROS level was inhibited by pre-treatment of the cells by antioxidants. TEM observations of C70 exposed cells showed cellular uptake of C70. These results were similar to the cellular influences caused by C60 which were reported by us previously. Although C70 did not cause cell death, it caused the induction of intracellular oxidative stress.  相似文献   

12.
《Chemosphere》2010,78(11):1482-1487
Concerns exist regarding the inadvertent release of engineered nanomaterials into natural systems, and the possible negative ecosystem response that may occur. Understanding sub-lethal effects may be particularly important to determining ecosystem responses as current levels of nanomaterial release are low compared to levels projected for the future. In this work, the sub-lethal effects and bioaccumulation of water stable, nanocrystalline fullerenes as C60, (termed nC60) were studied in Daphnia magna, a globally distributed, parthenogenetic zooplankton. Sub-lethal concentrations were first determined for both mature mother (LD50 = 0.4 mg L−1) and neonate (gestating) daphnids (0.2 mg L−1) in standard 48 h exposure tests. Subsequent experiments focused on the accumulation and effects (at temperatures of 18–28 °C) of nC60, during the D. magna reproductive cycle. The results demonstrate that upon sub-lethal exposure, the mortality rates of gestating daphnids increased with time and developmental stage. The maturation of daughter daphnids was negatively impacted. The mother daphnids were unable to reproduce again after exposure during pregnancy, and differential bioaccumulation occurred as a function of lipid content in the daphnia with the highest accumulation level of 7000 mg kg−1 wet weight. Taken together, these results not only describe the accumulation and sub-lethal effects of nC60 on exposed daphnia, but also highlight the importance of sub-lethal exposure scenarios, which are critical to fully understanding the potential impact of fullerenes and other engineered nanoscale materials on natural systems.  相似文献   

13.
The measured physical size distributions of sub-micron particles during cold season at Pune, India are analyzed to explore the characteristics of nucleation and growth properties. Preliminary analysis of aerosol size distribution in time-series shows large increase in number concentration due to nucleation events between 0800 h and 1030 h at this location. The observable quantities such as condensable vapor concentration (C), its source rate (Q), growth rate (GR) and condensable sink (CS) are estimated from the time-series evolutions of aerosol size distributions. The concentration of vapor and its source rate were about 19.8 ± 2.15 × 107 molecules cm?3 and 1.28 ± 0.084 × 107 cm?3 s?1 respectively. The average condensation sink and growth rate were 7.1 ± 0.4 × 10?2 s?1 and 16.95 ± 1.86 nm h?1 respectively during the growth period. The values are high enough to trigger the nucleation bursts and enhance subsequent growth rates of nucleation mode particles at this location. The magnitudes are in the range of those observed at New Delhi, India and much higher than those of European cities. The ratio of apparent to real nucleation rate is found to be a measure of number concentration of freshly produced particles by photo-chemical nucleation. The predicted number concentrations corresponding to measured distributions of mid-point diameter increases with the size for both 1 nm nucleated clusters and 3 nm particles. The database of all the possible event days and the event characteristics forms the basis for future works into the causes and implications of atmospheric particle formation at this location.  相似文献   

14.
A series of backscatter Lidar measurements were made around a bio-waste power station at Eye in Suffolk over a period of 10 days in May 1999. These measurements were supplemented with bag samples of SF6 tracer, analysed on site using gas chromatography with an electron capture detector. Despite problems with contamination, a detection limit of 20 ppt was eventually achieved and this permitted useful plume measurements from a release rate of 1–2 l min−1. Concentration/flux ratios were estimated from the Lidar measurements using an integral technique. Of the Lidar runs obtained, 24 were coincident with a tracer release. After allowing for the background of both aerosol and tracer, it was apparent that the independent calibrations of concentration/flux ratio from Lidar or tracer agreed with each other to within 20–60%. This permits the Lidar scans to be used to estimate peak near-ground concentrations, though because of various technical difficulties (poor alignment, background sources of aerosol, or an inconvenient wind direction) this cannot always be achieved. Besides giving confidence in the Lidar calibration, the tracer measurements were valuable in permitting aerosol from the stack to be distinguished from aerosol from fugitive sources. Meteorological parameters were logged simultaneously with the dispersion measurements. These parameters included conventional means of wind speed and direction, temperature, humidity and insolation, and also micrometeorological measurements of turbulence and of turbulent fluxes. The Lidar was used to estimate wind speed and direction at plume height and the boundary layer depth and cloud-base where possible. Source emission characteristics were also logged.  相似文献   

15.
Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 – 9 May 1996) with the Canadian patent pending.XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) to 110% for triallate [S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m-2 da-1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m-2 da-1: and, γ-HCH (γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m-2 da-1.  相似文献   

16.
Carbon monoxide (CO) measurements have been performed in a forested site in central Greece in the framework of the AEROBIC (AEROsol formation from Biogenic Carbon) campaign in summer 1997. The mean CO observed during the whole campaign ranged between 114 and 250 ppbv (mean of 170±27 ppbv), reflecting continental influence. The observed mean diurnal cycle of CO presented a minimum in the early morning due to the efficient deposition of CO in a shallow nocturnal layer sealed from the free tropospheric air during the night (loss rates of about 2 ppbv h−1). In the early morning and in the late afternoon, a sharp and fluctuating increase of CO was observed as the consequence of CO primary sources, likely by local traffic as suggested by the concomitant enhancements of black carbon (BC) and other combustion tracers. The morning pollution peak (6:30–8:30 local time) preceded slightly the opening of the nocturnal layer to the free troposphere, which resulted in CO reduction down to background levels at about 10:00. During the day (10:00–17:00), a slight but regular increase was observed on CO levels. For lack of simultaneous increase of other anthropogenic tracers, this CO enhancement has been attributed to its photochemical formation initiated by the oxidation of reactive biogenic hydrocarbons. This observed net production of CO averaging 1.2 ppbv h−1 is quite well reproduced by a box model containing an explicit chemical scheme of isoprene and α- and β-pinene and taking into account the measured mixing ratios and the reactivity of all biogenic organic reactive compounds when uncertainties in measurements and modelling are considered.  相似文献   

17.
Ozone was measured in six- and NOx in five sampling periods in 1996–97, mostly during summer, at a 1070 m altitude site in northern Peloponnese. Mean values in each sampling period ranged from 43–48 ppb exceeding the European Union 24 h plant protection standard. The background ozone concentration of 43 ppb derived from the correlation of ozone with NOx also exceeded the EU plant protection standard. Ozone exhibited maxima in the afternoon and minima during the night; in certain 24–48 h periods, however, the ozone concentrations remained practically constant; in these short periods air mass back trajectories indicated air masses which originated in north Africa. NOx concentrations had maximum of 24 h around noon. Their mean concentrations ranged from 0.5–0.7 ppb, smaller than respective concentrations in north-central Europe.  相似文献   

18.
Membrane-enclosed copolymer (MECOPs) samplers containing crystalline copolymers of ethylvinylbenzene-divinylbenzene in polyethylene membranes were used to assess the influence of a steel complex on the level and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in ambient air. MECOPs were deployed at six sites in Pohang, Korea for 37 days (August 9, 2005–September 14, 2005). Fluorene, phenanthrene, anthracene, and fluoranthene were dominant PAHs with the highest contribution of phenanthrene (59%) to the total amount of vapor-phase PAHs. The spatial distribution of total PAHs in the vapor phase ranging from 76 to 1077 ng MECOP−1 and air dispersion modeling suggested that the steel complex was the major PAH source in Pohang. It was revealed that the major wind directions rather than the distance from the steel complex were a significant factor affecting the levels of PAHs at the sampling sites. Finally, we tried to convert MECOP concentrations (ng MECOP−1) to air concentrations (ng m−3) with the modified sampling rates (m3 day−1). This study demonstrates again that passive air samplers are useful tools for spatially resolved and time-integrated monitoring of semivolatile organic compounds (SOCs) in ambient air.  相似文献   

19.
Rapid mapping of gas concentrations in air benefits studies of atmospheric phenomena ranging from pollutant dispersion to surface layer meteorology. Here we demonstrate a technique that combines multiple-open-path tunable-diode-laser spectroscopy and computed tomography to map tracer gas concentrations with approximately 0.5 m spatial and 7 s temporal resolution. Releasing CH4 as a tracer gas in a large (7 m×9 m×11 m high) ventilated chamber, we measured path-integrated CH4 concentrations over a planar array of 28 “long” (2–10 m) optical paths, recording a complete sequence of measurements every 7 s during the course of hour-long experiments. Maps of CH4 concentration were reconstructed from the long path data using a computed tomography algorithm that employed simulated annealing to search for a best fit solution. The reconstructed maps were compared with simultaneous measurements from 28 “short” (0.5 m) optical paths located in the same measurement plane. On average, the reconstructed maps capture ∼74% of the variance in the short path measurements. The accuracy of the reconstructed maps is limited, in large part, by the number of optical paths and the time required for the measurement. Straightforward enhancements to the instrumentation will allow rapid mapping of three-dimensional gas concentrations in indoor and outdoor air, with sub-second temporal resolution.  相似文献   

20.
Atmospheric ammonia mixing ratios and the main inorganic ions NH4+, NO3 and SO42− of size-resolved particles in the range from 0.05 to 10 μm were measured at an urban site in Münster, Germany. High mixing ratios of ammonia with a median of 5.2 ppb and a maximum of 50 ppb were detected. The mass fraction of submicron particles was much higher during the day than at night. At night, a greater particle mass and an increased presence of particulate nitrate was measured. Recurring patterns of particle distribution were distinguished and their characteristics analysed. In half of the measurements, the accumulation mode was clearly dominating, which is an indication of aged aerosol. In some measurements, higher concentrations of fine particles were found indicating particle formation. In these cases, a smaller particle mass and about four times greater ratios of ammonia versus ammonium concentrations were observed. These data show that ammonia contributes considerably to the formation of secondary particulate material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号