首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel).The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m?2 d?1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m?2 d?1, respectively.Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.9–1.4 mg N m?2 d?1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3?, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (~15%) to the total N-budget.Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m?2 d?1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 2–2.5-times higher than in other campaigns.  相似文献   

2.
Regional estimates of fluxes of volatile organic compounds (VOCs) are required to improve our understanding of their role in the chemistry of the atmosphere. Flux measurements on such a scale can best be obtained using aircraft-based systems. These systems usually rely on the eddy covariance technique, which requires fast response gas sensors for flux measurement, but such sensors are not available for most organic compounds, therefore, the relaxed eddy-accumulation (REA) technique was selected. An aircraft-based REA sampling system was developed and used to measure isoprene emission over the boreal forest during the 1996 summer. Over a short period in July at the Boreal Ecosystem/Atmosphere Study (BOREAS) southern study area (SSA), the isoprene fluxes ranged from −0.06 to 1.79 μg m-2 s-1, with a mean of 0.59±0.34 μg m-2 s-1, while in August at the BOREAS northern study area (NSA) the isoprene fluxes ranged from 0.00 to 0.26 μg m-2 s-1, with a mean of 0.14±0.09 μg m-2 s-1. In the SSA, the isoprene fluxes over aspen ranged from 0.44 to 1.79 μg m-2 s-1, with a mean of 0.92±0.33 μg m-2 s-1, whereas over black spruce, isoprene fluxes ranged from −0.06 to 0.54 μg m-2 s-1, with a mean of 0.36±0.21 μg m-2 s-1. The isoprene fluxes were exponentially correlated with solar radiation and radiative surface temperature. High correlations between isoprene fluxes and the fluxes of CO2 and latent heat were also observed. Carbon lost through isoprene emissions was about 0.7 and 0.8% of the CO2 assimilation rate for aspen and black spruce, respectively. The results demonstrate that the aircraft-based relaxed eddy-accumulation technique is a promising approach for quantifying the atmosphere–surface exchange of VOCs on a regional scale.  相似文献   

3.
Currently, legislation is being considered to reduce NH3 emissions in the UK. The major sources of NH3 and their relative contributions are well known, however, the processes that control the rates of emission are still poorly defined. A series of wind-tunnel experiments has been carried out to determine the effects of various management practices on NH3 losses. The tunnels were modified to enable NH3 emission and subsequent deposition to the adjacent swards in the field to be measured. The wind-tunnels were used to examine the effects of herbage length, cutting and N status on rates of NH3 fluxes, which together with the prevailing environmental conditions affected the rates of NH3 emission and deposition. Results showed that between 20 and 60% of the NH3 emitted was deposited within 2 m. Compensation points of between 1.0 and 2.3 μg m−3 were calculated for the grass sward.  相似文献   

4.
Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m−3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August–September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100–200 ng N m−3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20 ng N m−3. Large deposition velocities (>2 cm s−1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols.  相似文献   

5.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

6.
During a measurement period from June till November 2004, ammonia fluxes above non-fertilized managed grassland in The Netherlands were measured with a Gradient Ammonia—High Accuracy—Monitor (GRAHAM). Compared with earlier ammonia measurement systems, the GRAHAM has higher accuracy and a quality control system.Flux measurements are presented for two different periods, i.e. a warm, dry summer period (from 18 July till 15 August) and a wet, cool autumn period (23 September till 23 October). From these measurements canopy compensation points were derived. The canopy compensation point is defined as the effective surface concentration of ammonia. In the summer period (negative) deposition fluxes are observed in the evening, night and early morning due to leaf surface wetness, while in the afternoon emission fluxes are observed due to high canopy compensation points. The mean NH3-flux in this period was 4 ng m−2 s−1, which corresponds to a net emission of 0.10 kg N ha−1 over the 28 day sampling period. The NH3-flux in the autumn period mainly shows (negative) deposition fluxes due to small canopy compensation points caused by low temperatures and a generally wet surface. The mean NH3-flux in this period is −24 ng m−2 s−1, which corresponds to a net deposition of 0.65 kg N ha−1 over the 31 day sampling period.Frequency distributions of the NH3-concentration and flux show that despite higher average ambient NH3-concentrations (13.3 μg m−3 in the summer period vs. 6.4 μg m−3 in the autumn period) there are more emission events in the summer period than in the autumn period (about 50% of the time in summer vs. 20% in autumn). This is caused by the high canopy compensation points in summer due to high temperatures and a dry surface. In autumn, deposition dominates due to a generally wet surface that induces low canopy compensation points.For our non-fertilized agricultural grassland site, the derived canopy compensation points (at temperatures between 7 and 29 °C) varied from 0.5 to 29.7 μg m−3 and were on an average 7.0 μg m−3, which is quite high for non-fertilized conditions and probably caused by high nitrogen inputs in the past or high dry deposition amounts from local sources. The average value for the ratio between NH4+ and H+ concentration in the canopy, Γc, that was derived from our data was 2200.  相似文献   

7.
Isoprene fluxes from a Salix viminalis (willow) plantation in western Sweden were measured using the relaxed eddy accumulation (REA) technique. Fluxes of up to 0.23 μg m−2 s−1 could be observed. A standard emission factor at 303 K and a PAR flux of 1000 μ mol m−2 s−1 was estimated to 0.98 μg m−2 s−1 by using the G93 algorithm. The chemistry of an air parcel passing over a willow coppice plantation was investigated utilising a Lagrangian box model in which the measured isoprene fluxes were used as input data. Dispersion after the field was accounted for by a procedure based on the Gaussian plume model. The calculations indicate that, in most cases, the isoprene emissions have a small effect on the local air quality.  相似文献   

8.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

9.
Urban areas are significant contributors to global carbon dioxide emissions. Vehicle emissions and other anthropogenic related activities are a frequent source of CO2 to the atmosphere, contributing to global warming. Micrometeorological techniques used for observations in Northern Hemisphere cities have found that urban CO2 fluxes are consistently a source. This study investigates CO2 fluxes in an Australian city, adding to the global database of CO2 fluxes in a bid to aid in future development of planning policies concerning reductions in CO2 emissions. Using the eddy covariance approach, fluxes of CO2 were measured at a suburban site (Preston) in Melbourne, Australia from February 2004 to June 2005 to investigate temporal variability. A second site (Surrey Hills) with differing surface characteristics (in particular, greater vegetation cover) was also established in Melbourne and ran simultaneously for 6 months (February 2004–July 2004). Results showed that both sites were a net source of CO2 to the atmosphere. Diurnal patterns of fluxes were largely influenced by traffic volumes, with two distinct peaks occurring at the morning and evening traffic peak hours, with the winter morning peak averaging 10.9 μmol m−2 s−1 at Preston. Summer time fluxes were lower than during winter due to greater vegetative influence and reduced natural gas combustion. Vegetation limited the source of CO2 in the afternoon, yet was not enough to combat the strong local anthropogenic emissions. Surrey Hills showed higher fluxes of CO2 despite greater vegetation cover because of higher local traffic volumes. Annual emissions from Preston were estimated at 84.9 t CO2 ha−1 yr−1. Magnitudes and patterns of suburban CO2 fluxes in Melbourne were similar to those observed in Northern Hemisphere suburban areas.  相似文献   

10.
Global warming is increasingly challenging for wetland ecological function. A temperature controlled microcosm system was developed to simulate climate change scenarios of an ambient temperature (control) and an elevated temperature (+5 °C). The effects and associated mechanisms of warming on phosphorus (P) fluxes at the sediment–water interface of six subtropical wetlands were investigated. The results indicated that P fluxes were generally enhanced under the experimental warming as measured by higher P concentrations in the porewater and overlying water as well as higher benthic P fluxes. The release of P from sediment to porewater occurred more strongly and quickly in response to experimental warming compared to the subsequent upward transfer into overlying water. The average accumulative benthic P output from the tested wetlands under the experimental warming was greater by 12.9 μg cm?2 y?1 (28%) for total P and 8.26 μg cm?2 y?1 (25%) for dissolved reactive P, compared to the ambient scenarios. Under warming the redistribution of P fractions in sediments occurred with greater NH4Cl–P and lower BD–P (extracted by a bicarbonate buffered dithionite solution) accompanied by greater NaOH–P. The higher temperature enhanced total phospholipid fatty acids. A shift in the microbial community was also observed with a relative dominance of fungi (a 4.7% increase) and a relative decline (by 18%) in bacterial abundance, leading to the higher secretion of phosphatase. Comparing between wetlands, the potential P fluxes in the nutrient-enriched wetlands were less impacted by warming than the other wetland types investigated. Thus wetlands characterized by low or medium concentrations of P in sediments were more susceptible to warming compared to P-rich wetlands.  相似文献   

11.
In coastal Antarctica, freezing and thawing influence many physical, chemical and biological processes for ice-free tundra ecosystems, including the production of greenhouse gases (GHGs). In this study, penguin guanos and ornithogenic soil cores were collected from four penguin colonies and one seal colony in coastal Antarctica, and experimentally subjected to three freezing–thawing cycles (FTCs) under ambient air and under N2. We investigated the effects of FTCs on the emissions of three GHGs including nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The GHG emission rates were extremely low in frozen penguin guanos or ornithogenic soils. However, there was a fast increase in the emission rates of three GHGs following thawing. During FTCs, cumulative N2O emissions from ornithogenic soils were greatly higher than those from penguin guanos under ambient air or under N2. The highest N2O cumulative emission of 138.24 μg N2O–N kg?1 was observed from seal colony soils. Cumulative CO2 and CH4 emissions from penguin guanos were one to three orders of magnitude higher than those from ornithogenic soils. The highest cumulative CO2 (433.0 mgCO2–C kg?1) and CH4 (2.9 mgCH4–C kg?1) emissions occurred in emperor penguin guanos. Penguin guano was a stronger emitter for CH4 and CO2 while ornithogenic soil was a stronger emitter for N2O during FTCs. CO2 and CH4 fluxes had a correlation with total organic carbon (TOC) and soil/guano moisture (Mc) in penguin guanos and ornithogenic soils. The specific CO2–C production rate (CO2–C/TOC) indicated that the bioavailability of TOC was markedly larger in penguin guanos than in ornithogenic soils during FTCs. This study showed that FTC-released organic C and N from sea animal excreta may play a significant role in FTC-related GHG emissions, which may account for a large proportion of annual fluxes from tundra ecosystems in coastal Antarctica.  相似文献   

12.
The sea-to-air flux of the biogenic volatile sulphur compound dimethyl sulphide was assessed with the relaxed eddy accumulation (REA) and the gradient flux (GF) techniques from a stationary platform in the coastal Atlantic Ocean. Fluxes varied between 2 and 16 μmol m−2 d−1. Fluxes derived from REA were on average 7.1±5.03 μmol m−2 d−1, not significantly different from the average flux of 5.3±2.3 μmol m−2 d−1 derived from GF measurements. Gas transfer velocities were calculated from the fluxes and seawater DMS concentrations. They were within the range of gas transfer rates derived from the commonly used parameterizations that relate gas transfer to wind speed.  相似文献   

13.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

14.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

15.
According to regulations, sows with piglets on organic farms must graze on pastures. Volatilization of ammonia (NH3) from urine patches may represent a significant source of nitrogen (N) loss from these farms. Inputs of N are low on organic farms and losses may reduce crop production. This study examined spatial variations in NH3 volatilization using a movable dynamic chamber, and the pH and total ammoniacal nitrogen (TAN) content in the topsoil of pastures with grazing sows was measured during five periods between June 1998 and May 1999. Gross NH3 volatilization from the pastures was also measured with an atmospheric mass balance technique during seven periods from September 1997 until June 1999. The dynamic chamber study showed a high variation in NH3 volatilization because of the distribution of urine; losses were between 0 and 2.8 g NH3–N m−2 day−1. Volatilization was highest near the feeding area and the huts, where the sows tended to urinate. Ammonia volatilization rate was linearly related to the product of NH3 concentration in the boundary layer and wind speed. The NH3 in the boundary layer was in equilibrium with NH3 in soil solution. Gross NH3 volatilization was in the range 0.07–2.1 kg NH3–N ha−1 day−1 from a pasture with 24 sows ha−1. Ammonia volatilization was related to the amount of feed given to the sows, incident solar radiation and air temperature during measuring periods, and also to temperature, incident solar radiation and rain 1–2 days before measurements. Annual ammonia loss was 4.8 kg NH3–N sow−1.  相似文献   

16.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

17.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

18.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

19.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

20.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号