首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Effects of physical/environmental factors on fine particle (PM2.5) exposure, outdoor-to-indoor transport and air exchange rate (AER) were examined. The fraction of ambient PM2.5 found indoors (FINF) and the fraction to which people are exposed (α) modify personal exposure to ambient PM2.5. Because FINF, α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in FINF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in FINF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict FINF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ.Total personal exposures to PM2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R2 = 30–70%) and the largest contributor to (20–90%) indoor and personal exposures for PM2.5 mass and most species. Several activities had a dramatic impact on personal PM2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM2.5) improved the predictive power of the personal activity model for PM2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.  相似文献   

2.
Children’s exposures to ambient and non-ambient fine particulate matter (PM2.5) were determined using the sulphate and elemental carbon components of the PM2.5 mixture as tracers of the ambient contribution during a 6-week winter period in Prince George, British Columbia, Canada. Personal exposures to PM2.5 were measured in children at 5 elementary schools located throughout the city and ambient samples were collected on school rooftops. Average ambient levels and personal exposures during this time period were 13.8 μg m?3 and 16.4 μg m?3 respectively. From the data pooled across individuals, use of the two different tracers indicated identical estimates of median exposure to ambient PM2.5 (7.5 μg m?3) and similar estimates of non-ambient generated exposure (6.4 and 5.0 μg m?3) and infiltration (0.49 and 0.52) for the sulphate and elemental carbon approach, respectively. The median fraction of the ambient concentration resulting in exposure or exposure factors were 0.54 and 0.55 respectively, however lower values of 0.46 and 0.42 were determined from regression analysis. A strong association was found between exposure to ambient PM2.5 and measured ambient concentrations at both the closest school monitor (median r = 0.92) and a central site (median r = 0.88) demonstrating that the central site monitor was suitable for assessing longitudinal ambient generated exposure throughout the city. These results support the use of elemental carbon as a tracer of ambient generated exposure and the use of ambient data as estimates of longitudinal changes in children’s exposure in this setting. The importance of both ambient and non-ambient sources of PM2.5 is emphasized by their almost equal contribution to total personal exposures. Comparison with other studies suggests a limited influence of climate and the cold season in Prince George on exposure levels and found similar mean non-ambient generated exposures despite large variability across and within subjects in any given location.  相似文献   

3.
4.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

5.
ABSTRACT

We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (>64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM25, PM10, SO4 2-, O3, NO2, SO2, and exhaust-related VOCs.

Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM25 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2 5 sources. Evidence for this was provided by SO4 2-measurements, which can be thought of as a tracer for ambient PM25. For SO4 2-, personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments.

Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

6.
In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 16 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorded concurrent apartment, central indoor, outdoor and ambient site PM2.5 concentrations. Using the Baltimore panel study data, we develop a Bayesian hierarchical model to characterize the relationship between personal exposure and concentrations of PM2.5 indoors and outdoors. Personal exposure is expressed as a linear combination of time spent in microenvironments and associated microenvironmental concentrations. The model incorporates all available monitoring data and accounts for missing data and sources of uncertainty such as measurement error and individual differences in exposure. We discuss the implications of using personal versus ambient PM2.5 measurements in characterization of personal exposure to PM2.5.  相似文献   

7.
Metropolitan residents are concerned about their exposure to airborne pollutants. But establishing these exposures is challenging. A compact personal exposure kit (PEK) was developed to evaluate personal integrated exposure (PIE) from time-resolved data to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) in five microenvironments, including office, home, commuting, other indoor activities (other than home and office), and outdoor activities experienced both on weekdays and weekends. The study was conducted in Hong Kong. The PEK measured PM2.5, reported location and several other factors, stored collected data, as well as reported the data back to the investigators using global system for mobile communication (GSM) telemetry. Generally, PM2.5 concentrations in office microenvironment were found to be the smallest (13.0 μg/m3), whereas the largest PM2.5 concentration microenvironments were experienced during outdoor activities (54.4 μg/m3). Participants spent more than 85% of their time indoors, including in offices, homes, and other public indoor venues. On average, 42% and 81% of the time were spent in homes, which contributed 52% and 79% of PIE (during weekdays and weekends, respectively), suggesting that improvement of air quality in homes may reduce overall exposures and indicating the need for actions to mitigate possible public health burdens in Hong Kong. This study also found that various indoor/outdoor microenvironments experienced by urban office workers cannot be accurately represented by general urban air quality data reported from the regulatory monitoring. Such personalized air quality information, especially while in transit or in offices and homes, may provide improved information on population exposures to air pollution.

Implications: A newly developed personal exposure kit (PEK) was used to monitor PM2.5 exposure of metropolitan citizens in their daily life. Different microenvironments and time durations caused various personal integrated exposure (PIE). The stationary monitoring method for PIE was also compared and evaluated with PEK. Positive protection actions can be taken after understanding the major contribution to PM2.5 exposure.  相似文献   


8.
ABSTRACT

The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

9.
10.
ABSTRACT

Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects.

Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.  相似文献   

11.
ABSTRACT

Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency (EPA)-sponsored 1998 Baltimore and 1999 Fresno PM exposure studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly (>65 years old) subjects. Integrated 24-hr filter-based PM2.5 or PM10 mass measurements [using Personal Environmental Monitors(PEMs)] included personal measurements, indoor and outdoor residential measurements, and measurements at a central indoor site and a community monitoring site. A subset of the participants in each study wore passive nephelometers that continuously measured (1-min averaging time) particles ranging in size from 0.1 to ~10 um. Significant activities and locations were identified by a statistical mixed model (p < 0.01) for each study population based on the measured PM2.5 or PM10 mass and time activity data. Elevated PM concentrations were associated with traveling (car or bus), commercial locations (store, office, mall, etc.), restaurants, and working.

The modeled results were compared to continuous PM concentrations determined by the nephelometers while participants were in these locations. Overall, the nephelometer data agreed within 6% of the modeled PM2.5 results for the Baltimore participants and within ~20% for the Fresno participants (variability was due to zero drift associated with the nephelometer). The nephelom-eter did not agree as well with the PM10 mass measurements, most likely because the nephelometer optimally responds to fine particles (0.3–2 um). Approximately one-half (54 ± 31%; mean ± standard deviation from both studies) of the average daily PM2.5 exposure occurred inside residences, where the participants spent an average of 83 ± 10% of their time. These data also showed that a significant portion of PM2.5 exposure occurred in locations where participants spent only 4–13% of their time.  相似文献   

12.
Little is known about particulate elemental carbon (EC) personal exposure levels, a key component of diesel exhaust, specifically in transport microenvironments. A method utilizing the optical properties of EC particles has been applied to personal exposure measurement filter samples. In a series of field studies carried out in London, UK, during 1999–2000 over 400 fine particle (PM2.5) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments, along three main fixed routes. The particulate EC contribution to the PM2.5 personal exposure was assessed indirectly by means of an optical technique and with the development and use of a size fraction specific and site-specific calibration curve. In this first EC personal exposure study of transport users geometric mean exposure levels in the summer field campaign were 11.2 μg m−3 (GSD=2.7) for cyclists, 13.6 μg m−3 (GSD=1.9) for bus passengers and 21.6 μg m−3 (GSD=2.1) for car drivers; corresponding exposure levels in the winter were 16.4 μg m−3 (GSD=1.8), 18.6 μg m−3 (GSD=2.3) and 27.3 μg m−3 (GSD=2.0), respectively. EC/PM2.5 ratios were approximately 0.5–0.6 for bicycle and bus modes and 0.7–0.8 for the car mode. EC/PM2.5 ratios for different routes ranged from approximately 0.7 for Route 1 to 0.4 for Route 3. Cyclists had the lowest exposure to EC, and car occupants the highest exposure. A large difference in exposure levels between a central high traffic density route and the other less central routes was observed. Particulate EC was a very significant proportion of the total PM2.5 personal exposure and EC personal exposure levels were considerably higher than reported fixed site monitor EC concentrations.  相似文献   

13.
Personal 48-hr exposures to formaldehyde and acetaldehyde of 15 randomly selected participants were measured during the summer/autumn of 1997 using Sep-Pak DNPH-Silica cartridges as a part of the EXPOLIS study in Helsinki, Finland. In addition to personal exposures, simultaneous measurements of microenvironmental concentrations were conducted at each participant's residence (indoor and outdoor) and workplace. Mean personal exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb for acetaldehyde. Personal exposures were systematically lower than indoor residential concentrations for both compounds, and ambient air concentrations were lower than both indoor residential concentrations and personal exposure levels. Mean workplace concentrations of both compounds were lower than mean indoor residential concentrations. Correlation between personal exposures and indoor residential concentrations was statistically significant for both compounds. This indicated that indoor residential concentrations of formaldehyde and acetaldehyde are a better estimate of personal exposures than are concentrations in ambient air. In addition, a time-weighted exposure model did not improve the estimation of personal exposures above that obtained using indoor residential concentrations as a surrogate for personal exposures. Correlation between formaldehyde and acetaldehyde was statistically significant in outdoor microenvironments, suggesting that both compounds have similar sources and sinks in ambient urban air.  相似文献   

14.
The Southern California Children's Health Study (CHS) investigated the relationship between air pollution and children's chronic respiratory health outcomes. Ambient air pollutant measurements from a single CHS monitoring station in each community were used as surrogates for personal exposures of all children in that community. To improve exposure estimates for the CHS children, we developed an Individual Exposure Model (IEM) to retrospectively estimate the long-term average exposure of the individual CHS children to CO, NO2, PM10, PM2.5, and elemental carbon (EC) of ambient origin. In the IEM, pollutant concentrations due to both local mobile source emissions (LMSE) and meteorologically transported pollutants were taken into account by combining a line source model (CALINE4) with a regional air quality model (SMOG). To avoid double counting, local mobile sources were removed from SMOG and added back by CALINE4. Limited information from the CHS survey was used to group each child into a specific time-activity category, for which corresponding Consolidated Human Activity Database (CHAD) time-activity profiles were sampled. We found local traffic significantly increased within-community variability of exposure to vehicle-related pollutants. PM-associated exposures were influenced more by meteorologically transported pollutants and local non-mobile source emissions than by LMSE. The overall within-community variability of personal exposures was highest for NO2 (±20–40%), followed by EC (±17–27%), PM10 (±15–25%), PM2.5 (±15–20%), and CO (±9–14%). Between-community exposure differences were affected by community location, traffic density, and locations of residences and schools in each community. Proper siting of air monitoring stations relative to emission sources is important to capture community mean exposures.  相似文献   

15.
Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.

Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.  相似文献   

16.
Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25–55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM2.5 and NO2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM2.5 and NO2. A high correlation was observed between the personal 48-h PM2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM2.5 and the personal work time PM2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM2.5) and 19% (NO2) of the variation in perceived air pollution annoyance in traffic. Compared to Helsinki, in Basel and Prague the adult participants were more annoyed by air pollution while in traffic even after taking the current home outdoor PM2.5 and NO2 levels into account.  相似文献   

17.
Many individuals work outdoors in the formal and informal economy of the large urban areas in developing countries, where they are potentially exposed for long periods to high concentrations of ambient airborne particulate matter (PM). This study describes the personal exposures to PM of 2.5 μm aerodynamic diameter and smaller (PM2.5) for a sample of outdoor and indoor workers in two cities, Mexico City and Puebla, in central Mexico.Thirty-six workers in Mexico City and 17 in Puebla were studied. Thirty were outdoor workers (i.e., taxi and bus drivers, street vendors, and vehicle inspectors) and 23 were indoor (office) workers. Their personal exposures to PM2.5 were monitored for a mean 19-h period. In Mexico City, the street vendors and taxi drivers overall exposures were significantly higher than indoor workers were. In Puebla, bus drivers had a higher overall exposure than vehicle inspectors or indoor workers. Most of the exposures were above the 65 μg m−3 24-h Mexican standard.In Mexico City, exposures to Si, Ti, Cr, Mn, Fe, Ni, Cu, Mo and Cd were higher for outdoor than for indoor workers. In Puebla, exposures to Si, S, K, Ca, Ti, V, Mn, and Zn also were higher for outdoor workers. In Mexico City outdoor workers exposures to Cu, Pb, Cr, Se and Mo were 4 or more times higher than for Puebla outdoor workers, while Puebla outdoor workers’ exposures to V, Si, Fe and Ca were 3 or more times higher than Mexico City outdoor workers.These results suggest that for these outdoor workers the elevated local ambient air PM concentrations and an extended period spent outside are more important contributors to total exposures than indoor concentrations. These workers could be at particular risk of increased morbidity and mortality associated with ambient PM.  相似文献   

18.
Recent studies have attributed toxic effects of ambient fine particulate matter (aerodynamic diameter  2.5 μm; PM2.5) to physical and/or chemical properties rather than total mass. However, identifying specific components or sources of a complex mixture of ambient PM2.5 that are responsible for adverse health effects is still challenging. In order to improve our understanding of source-to-receptor pathways for ambient PM2.5 (links between sources of ambient PM2.5 and measures of biologically relevant dose), integrated inhalation toxicology studies using animal models and concentrated air particles (CAPs) were completed in southwest Detroit, a community where the pediatric asthma rate is more than twice the national average. Ambient PM2.5 was concentrated with a Harvard fine particle concentrator housed in AirCARE1, a mobile air research laboratory which facilitates inhalation exposure studies in real-world settings. Detailed characterizations of ambient PM2.5 and CAPs, identification of major emission sources of PM2.5, and quantification of trace elements in the lung tissues of laboratory rats that were exposed to CAPs for two distinct 3-day exposure periods were completed.This paper describes the physical/chemical properties and sources of PM2.5, pulmonary metal concentrations and meteorology from two different 3-day exposure periods—both conducted at the southwest Detroit location in July 2003—which resulted in disparate biological effects. More specifically, during one of the exposure periods, ambient PM2.5-derived trace metals were recovered from lung tissues of CAPs-exposed animals, and these metals were linked to local combustion point sources in southwest Detroit via receptor modeling and meteorology; whereas in the other exposure period, no such trace metals were observed. By comparing these two disparate results, this investigation was able to define possible links between PM2.5 emitted from refineries and incinerators and biologically relevant dose, which in turn may be associated with observed health effects.  相似文献   

19.
The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study at 219 non-smoking homes (once or twice) in Los Angeles County, CA, Elizabeth, NJ, and Houston, TX. Fourier transform infrared (FTIR) spectra of PM2.5 samples were collected, and FG absorbances were quantified by partial least squares (PLS) regression, a multivariate calibration method.There is growing evidence in the literature that a large majority of indoor-generated PM2.5 is organic. The current research suggests that indoor-generated PM2.5 is enriched in aliphatic carbon–hydrogen (CH) FGs relative to ambient outdoor PM2.5. Indoor-generated CH exceeded outdoor-generated CH in 144 of the 167 homes for which indoor or outdoor CH was measurable; estimated indoor emission rates are provided. The strong presence of aliphatic CH FGs in indoor PM2.5 makes particulate organic matter substantially less polar indoors and in personal exposures than outdoors. This is a substantial new finding. Based on the quantified FGs, the average organic molecular weight (OM) per carbon weight (OC), a measure of the degree of oxygenation of organic PM, is in the range of 1.7–2.6 for outdoor samples and 1.3–1.7 for indoor and personal samples. Polarity or degree of oxygenation effects particle deposition in exposure environments and in the respiratory system.  相似文献   

20.
ABSTRACT

To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated.

Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rS (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland.

We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号