首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor modeling application framework for particle source apportionment   总被引:6,自引:0,他引:6  
Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses.  相似文献   

2.
Fine atmospheric particulate material was collected at five sites in upstate New York and analyzed for its trace element composition by instrumental neutron activation analysis. Of the 3700 daily samples collected over a 2-yr period, 1459 were analyzed for 39 elements, providing a large and detailed data set. Factor analysis (FA) was used to identify potential pollution sources or source regions and to construct inorganic source profiles for each. Following FA, the method of absolute factor scores-multiple linear regression was used to estimate the absolute elemental contribution of each of the identified sources. Factor analysis identified nine sources impacting the sampling region. Seven of these were found to be present in varying degrees among of the sampling sites. The other two sources had more localized impacts and were observed at only one of the sites each. Regional sources (such as the midwestern United States and eastern Canada) and crustal/soil material accounted for the greatest amount of the trace elements measured in the collected material.  相似文献   

3.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

4.
To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal–optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BCCTO-375 concentration and the reported elemental carbon (EC) concentration measured by the “Speciation Trends Network—National Institute of Occupational Safety and Health” method (ECNIOSH) with BCCTO-375 of 0.054±0.002 g g−1 and ECNIOSH of 0.067±0.008 g g−1. In contrast, there was an average factor of ca. 20 difference between BCCTO-375 and ECNIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BCCTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the ECNIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BCCTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BCCTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BCCTO-375 in Stockholm was 70% and in the background area 88%.  相似文献   

5.
南京市大气气溶胶中颗粒物和正构烷烃特征及来源分析   总被引:10,自引:2,他引:10  
于2002年夏季(7月)和冬季(12月)采集南京市5个功能区的大气气溶胶(PM2.5和PM10)样品,对两个季节不同功能区颗粒物及其颗粒物中正构烷烃的分布特征和污染来源进行了分析。结果表明,南京市大气颗粒物含量冬季高于夏季,细颗粒高于粗颗粒。正构烷烃的变化规律同颗粒物一致,且主要分布在细颗粒物上。根据各个功能区正构烷烃(C15-C32)的CPI(CPI1、CPI2和CPI3)结果,可知南京市大气气溶胶中正构烷烃由生物源和人为源共同排放产生。%waxCn的结果表明生物源对气溶胶中正构烷烃的贡献率为20%~43%,对南京市大气颗粒物的贡献率为1.66%~4.76%。  相似文献   

6.
An extensive investigation was carried out for the characterisation of the air particulate composition in Florence. The aim was to determine the aerosol elemental concentrations, as well as to identify pollution sources. For our investigation, the external Particle-Induced X-Ray Emission-Particle-Induced gamma-Ray Emission beam facility of the Istituto Nazionale di Fisica Nucleare, Van de Graaff accelerator at the Physics Department of the Florence University was used. We report the results of the analysis of a long temporal series (approximately 1 yr) of PM10 particulate samples, collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements were detected. The long sampling period (approximately 1 yr) allowed a comparison with the air quality recommended values and the identification of seasonal variations. Four main sources (traffic, oil-combustion, soil-dust, and wind transported sea-salt) were extracted with the help of Principal Component Analysis (PCA). An absolute PCA showed traffic to be the major source both in the high traffic site and in the urban background site.  相似文献   

7.
Hong Kong is a densely populated city situated in the fast developing Pearl River Delta of southern China. In this study, the recent data on ozone (O3) and related air pollutants obtained at three sites in Hong Kong are analyzed to show the variations of O3 in urban, sub-urban and rural areas and the possible regional influences. Highest monthly averaged O3 was found at a northeastern rural site and lowest O3 level was observed at an urban site. The levels of NOx, CO, SO2 and PM10 showed a different spatial pattern with the highest level in the urban site and lowest at the rural site. Analysis of chemical species ratios such as SO2/NOx and CO/NOx indicated that the sites were under the influences of local and regional emissions to varying extents reflecting the characteristics of emission sources surround the respective sites. Seasonal pattern of O3 is examined. Low O3 level was found in summer and elevated levels occurred in autumn and spring. The latter appears different from the previous result obtained in 1996 indicating a single maximum occurring in autumn. Principal component analysis was used to further elucidate the relationships of air pollutants at each site. As expected, the O3 variation in the northeastern rural area was largely determined by regional chemical and transport processes, while the O3 variability at the southwestern suburban and urban sites were more influenced by local emissions. Despite the large difference in O3 levels across the sites, total potential ozone (O3+NO2) showed little variability. Cases of high O3 episodes were presented and elevated O3 levels were formed under the influence of tropical cyclone bringing in conditions of intense sunlight, high temperature and light winds. Elevated O3 levels were also found to correlate with enhanced ratio of SO2 to NOx, suggesting influence of regional emissions from the adjacent Pearl River Delta region.  相似文献   

8.
Hong Kong's persistent unhealthy level of fine particulate matter is a current public health challenge, complicated by the city being located in the rapidly industrializing Pearl River Delta Region of China. While the sources of the region's fine particulate matter (PM2.5) are still not well understood, this study provides new source information through ground measurements and statistical analysis of 24 elements associated with particulate matter collected on filters. Field measurements took place over 4 months (October 2002, December 2002, March 2003, and June 2003) at seven sites throughout the Pearl River Delta, with three sites located in Hong Kong and four sites in the neighboring province, Guangdong. The 4-month average element concentrations show significant variation throughout the region, with higher levels of nearly every species seen among the northern Guangdong sites in comparison to Hong Kong. The high correlation (Pearson r>0.8) and similar magnitudes of 11 species (Al, Si, S, K, Ca, Mn, Fe, Zn, Br, Rb, and Pb) at three contrasting sites in Hong Kong indicate that sources external to Hong Kong dominate the regional levels of these elements. Further correlative analysis compared Hong Kong against potential source areas in Guangdong Province (Shenzhen, Zhongshan, and Guangzhou). Moderate correlation of sulfur for all pairings of Hong Kong sites with three Guangdong sites in developed areas (average Pearson r of 0.52–0.94) supports the importance of long-distance transport impacting the region as a whole, although local sources also clearly impact observed concentrations. Varying correlative characteristics for zinc when Hong Kong sites are paired with Shenzhen (average r=0.86), Guangzhou (average r=−0.65) and Zhongshan (average r=0.45) points to a source area located south of Guangzhou and locally impacting Zhongshan. The concentration distribution and correlative characteristics of bromide point to sources located within the Pearl River Delta, but the specific location is yet inconclusive. Uniquely poor correlation of eight species (Al, Si, K, Ca, Mn, Fe, Rb, and Pb) for the pairing of Hong Kong sites with Guangzhou, in addition to the relatively higher concentrations measured at Guangzhou, indicates a significant regional impact due to land development and industrial activities in the Guangzhou vicinity.  相似文献   

9.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong   总被引:21,自引:0,他引:21  
Lee SC  Chiu MY  Ho KF  Zou SC  Wang X 《Chemosphere》2002,48(3):375-382
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong.  相似文献   

10.
A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

11.
Rapid urbanization and industrialization in South China has placed great strain on the environment and on human health. In the present study, the total suspended particulate matter (TSP) in the urban and suburban areas of Hong Kong and Guangzhou, the two largest urban centres in South China, was sampled from December 2003 to January 2005. The samples were analysed for the concentrations of major elements (Al, Fe, Mg and Mn) and trace metals (Cd, Cr, Cu, Pb, V and Zn), and for Pb isotopic composition. Elevated concentrations of metals, especially Cd, Pb, V and Zn, were observed in the urban and suburban areas of Guangzhou, showing significant atmospheric trace element pollution. Distinct seasonal patterns were observed in the heavy metal concentrations of aerosols in Hong Kong, with higher metal concentrations during the winter monsoon period, and lower concentrations during summertime. The seasonal variations in the metal concentrations of the aerosols in Guangzhou were less distinct, suggesting the dominance of local sources of pollution around the city. The Pb isotopic composition in the aerosols of Hong Kong had higher 206Pb/207Pb and 208Pb/207Pb ratios in winter, showing the influence of Pb from the northern inland areas of China and the Pearl River Delta (PRD) region, and lower 206Pb/207Pb and 208Pb/207Pb ratios in summer, indicating the influence of Pb from the South Asian region and from marine sources. The back trajectory analysis showed that the enrichment of heavy metals in Hong Kong and Guangzhou was closely associated with the air mass from the north and northeast that originated from northern China, reflecting the long-range transport of heavy metal contaminants from the northern inland areas of China to the South China coast.  相似文献   

12.
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM10 and PM2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.  相似文献   

13.
The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins.  相似文献   

14.
Metropolitan residents are concerned about their exposure to airborne pollutants. But establishing these exposures is challenging. A compact personal exposure kit (PEK) was developed to evaluate personal integrated exposure (PIE) from time-resolved data to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) in five microenvironments, including office, home, commuting, other indoor activities (other than home and office), and outdoor activities experienced both on weekdays and weekends. The study was conducted in Hong Kong. The PEK measured PM2.5, reported location and several other factors, stored collected data, as well as reported the data back to the investigators using global system for mobile communication (GSM) telemetry. Generally, PM2.5 concentrations in office microenvironment were found to be the smallest (13.0 μg/m3), whereas the largest PM2.5 concentration microenvironments were experienced during outdoor activities (54.4 μg/m3). Participants spent more than 85% of their time indoors, including in offices, homes, and other public indoor venues. On average, 42% and 81% of the time were spent in homes, which contributed 52% and 79% of PIE (during weekdays and weekends, respectively), suggesting that improvement of air quality in homes may reduce overall exposures and indicating the need for actions to mitigate possible public health burdens in Hong Kong. This study also found that various indoor/outdoor microenvironments experienced by urban office workers cannot be accurately represented by general urban air quality data reported from the regulatory monitoring. Such personalized air quality information, especially while in transit or in offices and homes, may provide improved information on population exposures to air pollution.

Implications: A newly developed personal exposure kit (PEK) was used to monitor PM2.5 exposure of metropolitan citizens in their daily life. Different microenvironments and time durations caused various personal integrated exposure (PIE). The stationary monitoring method for PIE was also compared and evaluated with PEK. Positive protection actions can be taken after understanding the major contribution to PM2.5 exposure.  相似文献   


15.
Chemical mass balance (CMB) and trajectory receptor models were applied to speciated particulate matter with aerodynamic diameter < or =2.5 microm (PM2.5) measurements from Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network across the state of Minnesota as part of the Minnesota PM2.5 Source Apportionment Study (MPSAS). CMB equations were solved by the Unmix, positive matrix factorization (PMF), and effective variance (EV) methods, giving collective source contribution and uncertainty estimates. Geological source profiles developed from local dust materials were either incorporated into the EV-CMB model or used to verify factors derived from Unmix and PMF. Common sources include soil dust, calcium (Ca)-rich dust, diesel and gasoline vehicle exhausts, biomass burning, secondary sulfate, and secondary nitrate. Secondary sulfate and nitrate aerosols dominate PM2.5 mass (50-69%). Mobile sources outweigh area sources at urban sites, and vice versa at rural sites due to traffic emissions. Gasoline and diesel contributions can be separated using data from the STN, despite significant uncertainties. Major differences between MPSAS and earlier studies on similar environments appear to be the type and magnitude of stationary sources, but these sources are generally minor (<7%) in this and other studies. Ensemble back-trajectory analysis shows that the lower Midwestern states are the predominant source region for secondary ammoniated sulfate in Minnesota. It also suggests substantial contributions of biomass burning and soil dust from out-of-state on occasions, although a quantitative separation of local and regional contributions was not achieved in the current study. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a summary of input data, Unmix and PMF factor profiles, and additional maps.  相似文献   

16.
Environmental Science and Pollution Research - Polycyclic aromatic hydrocarbons (PAHs), as a class of important environmental pollutants, have received considerable concern due to their widespread...  相似文献   

17.
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.  相似文献   

18.
Salvetti R  Azzellino A  Vismara R 《Chemosphere》2006,65(11):2168-2177
The source apportionment of the annual nutrient load carried by the Po river to the Adriatic sea has been studied.

An integrated modelling approach was applied to the Lombardy plain area, which covers about 34% of the Po river watershed area and accounts for about 50% of the point sources’ loads carried by the river. To extract all the information available from direct instream measurements, two different modelling tools were alternatively used. The source apportionment was investigated considering both dry and wet weather scenarios. In order to quantify the apportionment in dry-weather conditions, the Lombardy portion of the Po river basin was modelled by using the US-EPA QUAL2E model. Such a simulation allowed to assess a significant contribution (about 50% of the total dry-weather load) of a not rain-driven diffuse pollution component (i.e. groundwater, springs, lake emissaries). Moreover, to estimate the rain-driven surface runoff contribution to the instream total load, the Lombardy plain area was also modelled by means of the US-DA SWAT model. SWAT results indicate a runoff contribution to the Po river instream total load of about 10 000 t N yr−1 and 1300 t P yr−1 (i.e. approximately the 10–20% of the total annual Lombardy nutrient load). At the event scale (i.e. the single rainstorm event) the runoff contribution may rise up to 30–80% of the total instream load. Finally, the total annual nitrogen load at the Po basin closure was estimated for the period 1985–2001. Out of a total annual load of 140 000 t N yr−1, Lombardy accounts for 43% (point plus diffuse sources). The rain-driven diffuse sources constitute the 20% of the overall total load, the point sources account for 40%, whereas the remaining 40% is mainly constituted by “dry-weather diffuse sources” (i.e. groundwater, springs, lake emissaries).  相似文献   


19.
Data from two of the United States Environmental Protection Agency's speciation trends network fine particulate matter sites within Chicago, Illinois were analyzed using the chemical mass balance (CMB) and positive matrix factorization (PMF) models to determine source contributions to the ambient fine particulate concentrations. The results from the two models were compared to determine the similarities and differences in the source contributions. This included examining the differences in the magnitude of the individual source contributions as well as the correlation between the contribution values from the two methods. The results showed that both models predicted sulfates, nitrates and motor vehicles as the three highest fine particle contributors for the two sites accounting for approximately 80% of the total. The PMF model attributed a slightly greater amount of fine particulate to the road salt, steel and soil sources while vegetative burning contributed more in the CMB results. Correlations between the contribution results from the two models were high for sulfates, nitrates and road salt with very good correlations existing for motor vehicles and petroleum refineries. The predicted PMF profiles agreed well with measured source profiles for the major species associated with each source.  相似文献   

20.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号