共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses. 相似文献
2.
《Atmospheric environment (Oxford, England : 1994)》1999,33(19):3201-3212
An advanced algorithm called positive matrix factorization (PMF) in receptor modeling was used to identify the sources of respirable suspended particulates (RSP) in Hong Kong. The compositional data obtained from the Hong Kong Environmental Protection Department from 1992 to 1994 were analyzed. The species analyzed in this study are Al, Ca, Mg, Pb, Na+, V, Cl−, NH4+, SO42−, Br−, Mn, Fe, Ni, Zn, Cd, K+, Ba, Cu, and As. Unlike the conventional receptor modeling algorithm, factor analysis PMF only generates non-negative source profiles. To eliminate sulfate from such factors where it is not physically plausible, special penalty terms were included in the model so that sulfate concentrations could be selectively decreased in specified factors. A 9-factor model containing non-zero sulfate concentrations in three factors gives the most satisfactory source profiles. Ammonium sulfate, chloride depleted marine aerosols and crustal aerosols are the three non-zero sulfate sources. Other factors are marine aerosols, non-ferrous smelters, particulate copper, fuel oil burning, vehicular emission and bromide/road dust. The last two sources can be combined as a single source of vehicle/road dust. The compositional profiles of these factors were also developed. The mass profiles obtained can be improved by further refinement of distribution of sulfate in the sources. 相似文献
3.
Ames MR Gullu G Beal J Olmez I 《Journal of the Air & Waste Management Association (1995)》2000,50(5):881-888
Fine atmospheric particulate material was collected at five sites in upstate New York and analyzed for its trace element composition by instrumental neutron activation analysis. Of the 3700 daily samples collected over a 2-yr period, 1459 were analyzed for 39 elements, providing a large and detailed data set. Factor analysis (FA) was used to identify potential pollution sources or source regions and to construct inorganic source profiles for each. Following FA, the method of absolute factor scores-multiple linear regression was used to estimate the absolute elemental contribution of each of the identified sources. Factor analysis identified nine sources impacting the sampling region. Seven of these were found to be present in varying degrees among of the sampling sites. The other two sources had more localized impacts and were observed at only one of the sites each. Regional sources (such as the midwestern United States and eastern Canada) and crustal/soil material accounted for the greatest amount of the trace elements measured in the collected material. 相似文献
4.
Philip K. Hopke 《Journal of the Air & Waste Management Association (1995)》2016,66(3):237-259
Efforts have been made to relate measured concentrations of airborne constituents to their origins for more than 50 years. During this time interval, there have been developments in the measurement technology to gather highly time-resolved, detailed chemical compositional data. Similarly, the improvements in computers have permitted a parallel development of data analysis tools that permit the extraction of information from these data. There is now a substantial capability to provide useful insights into the sources of pollutants and their atmospheric processing that can help inform air quality management options. Efforts have been made to combine receptor and chemical transport models to provide improved apportionments. Tools are available to utilize limited numbers of known profiles with the ambient data to obtain more accurate apportionments for targeted sources. In addition, tools are in place to allow more advanced models to be fitted to the data based on conceptual models of the nature of the sources and the sampling/analytical approach. Each of the approaches has its strengths and weaknesses. However, the field as a whole suffers from a lack of measurements of source emission compositions. There has not been an active effort to develop source profiles for stationary sources for a long time, and with many significant sources built in developing countries, the lack of local profiles is a serious problem in effective source apportionment. The field is now relatively mature in terms of its methods and its ability to adapt to new measurement technologies, so that we can be assured of a high likelihood of extracting the maximal information from the collected data.Implications: Efforts have been made over the past 50 years to use air quality data to estimate the influence of air pollution sources. These methods are now relatively mature and many are readily accessible through publically available software. This review examines the development of receptor models and the current state of the art in extracting source identification and apportionments from ambient air quality data. 相似文献
5.
《Atmospheric environment (Oxford, England : 1994)》2007,41(7):1456-1472
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas. 相似文献
6.
《Atmospheric environment (Oxford, England : 1994)》2001,35(14):2497-2506
Urban aerosol characterization gathering ground-based in situ and sunphotometer measurements have been performed for the city of Thessaloniki for two specific days: the 12th and 13th of June 1997. A representative aerosol model for Thessaloniki aerosols was tentatively constructed for each day. Four components have been selected from our chemical measurements: black carbon (BC), particulate organic matter (POM), inorganic fine water soluble particles (WS) and a residue coarse component which mainly contains coarse dust and sea-salt particles (CC). Size distribution and complex refractive index for (WS) and (CC) components were determined from published data. (CC) has been shown to have a small optical effect compared to the submicron components. Size distribution for carbonaceous particles was obtained from sensitivity tests on particulate number and visible Angström exponent. The impact of relative humidity on extinction and scattering coefficients has been calculated on 13 June with Mie theory and Hänel relationships. Parameters needed for this calculation were well known for WS particles only. For POM particles we have used the experimental curve of hygroscopic factors obtained by Hobbs et al. (1997) for urban aerosols sampled on the East coast of United States to determine the hydrophilic dependency of POM particles. Relative humidity has been shown to be an important parameter even for values lower than 50%. Optical apportionment calculation has been realized pointing out that more than 45% of the total extinction coefficient is due to (POM) particles and about 20 and 30% to (WS) and (BC), respectively. 相似文献
7.
《Atmospheric environment (Oxford, England : 1994)》2007,41(36):7895-7906
To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal–optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BCCTO-375 concentration and the reported elemental carbon (EC) concentration measured by the “Speciation Trends Network—National Institute of Occupational Safety and Health” method (ECNIOSH) with BCCTO-375 of 0.054±0.002 g g−1 and ECNIOSH of 0.067±0.008 g g−1. In contrast, there was an average factor of ca. 20 difference between BCCTO-375 and ECNIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BCCTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the ECNIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BCCTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BCCTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BCCTO-375 in Stockholm was 70% and in the background area 88%. 相似文献
8.
南京市大气气溶胶中颗粒物和正构烷烃特征及来源分析 总被引:10,自引:2,他引:10
于2002年夏季(7月)和冬季(12月)采集南京市5个功能区的大气气溶胶(PM2.5和PM10)样品,对两个季节不同功能区颗粒物及其颗粒物中正构烷烃的分布特征和污染来源进行了分析。结果表明,南京市大气颗粒物含量冬季高于夏季,细颗粒高于粗颗粒。正构烷烃的变化规律同颗粒物一致,且主要分布在细颗粒物上。根据各个功能区正构烷烃(C15-C32)的CPI(CPI1、CPI2和CPI3)结果,可知南京市大气气溶胶中正构烷烃由生物源和人为源共同排放产生。%waxCn的结果表明生物源对气溶胶中正构烷烃的贡献率为20%~43%,对南京市大气颗粒物的贡献率为1.66%~4.76%。 相似文献
9.
Lucarelli F Mandò PA Nava S Prati P Zucchiatti A 《Journal of the Air & Waste Management Association (1995)》2004,54(11):1372-1382
An extensive investigation was carried out for the characterisation of the air particulate composition in Florence. The aim was to determine the aerosol elemental concentrations, as well as to identify pollution sources. For our investigation, the external Particle-Induced X-Ray Emission-Particle-Induced gamma-Ray Emission beam facility of the Istituto Nazionale di Fisica Nucleare, Van de Graaff accelerator at the Physics Department of the Florence University was used. We report the results of the analysis of a long temporal series (approximately 1 yr) of PM10 particulate samples, collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements were detected. The long sampling period (approximately 1 yr) allowed a comparison with the air quality recommended values and the identification of seasonal variations. Four main sources (traffic, oil-combustion, soil-dust, and wind transported sea-salt) were extracted with the help of Principal Component Analysis (PCA). An absolute PCA showed traffic to be the major source both in the high traffic site and in the urban background site. 相似文献
10.
《Atmospheric environment (Oxford, England : 1994)》2001,35(34):5961-5969
The concentrations of C1–C8 carbonyl compounds were measured at two urban sites in Hong Kong from October 1997 to September 2000. The daily total carbonyl concentrations were found to range from 2.4 to 37 μg m−3. Formaldehyde was the most abundant species, which comprised from 36 to 43% of the total detected carbonyls, followed by acetaldehyde (18–21%) and acetone (8–20%). The highest 24-hour average concentrations measured were 10 and 7.7 μg m−3 for formaldehyde and acetaldehyde, respectively. Seasonal and temporal variations in the concentrations of formaldehyde and acetaldehyde were not obvious, but lowest concentrations often occurred from June to August. The mean formaldehyde/acetaldehyde molar ratios at the two sites in summer (2.8±1.1 and 2.5±1.2) were significantly higher (p⩽0.01) than those in winter periods (1.9±0.6 and 2.0±0.6). The phenomena were explained by influences of both photochemical reactions and local meteorological conditions. Better correlations between formaldehyde and acetaldehyde, and between NOx and each of the two major carbonyls were obtained in winter periods indicating direct vehicular emissions were the principal sources. The ambient formaldehyde and acetaldehyde concentrations in the urban atmosphere of Hong Kong were within the normal ranges reported in the literature for other urban sites world-wide. 相似文献
11.
On the local and regional influence on ground-level ozone concentrations in Hong Kong 总被引:8,自引:0,他引:8
Hong Kong is a densely populated city situated in the fast developing Pearl River Delta of southern China. In this study, the recent data on ozone (O3) and related air pollutants obtained at three sites in Hong Kong are analyzed to show the variations of O3 in urban, sub-urban and rural areas and the possible regional influences. Highest monthly averaged O3 was found at a northeastern rural site and lowest O3 level was observed at an urban site. The levels of NOx, CO, SO2 and PM10 showed a different spatial pattern with the highest level in the urban site and lowest at the rural site. Analysis of chemical species ratios such as SO2/NOx and CO/NOx indicated that the sites were under the influences of local and regional emissions to varying extents reflecting the characteristics of emission sources surround the respective sites. Seasonal pattern of O3 is examined. Low O3 level was found in summer and elevated levels occurred in autumn and spring. The latter appears different from the previous result obtained in 1996 indicating a single maximum occurring in autumn. Principal component analysis was used to further elucidate the relationships of air pollutants at each site. As expected, the O3 variation in the northeastern rural area was largely determined by regional chemical and transport processes, while the O3 variability at the southwestern suburban and urban sites were more influenced by local emissions. Despite the large difference in O3 levels across the sites, total potential ozone (O3+NO2) showed little variability. Cases of high O3 episodes were presented and elevated O3 levels were formed under the influence of tropical cyclone bringing in conditions of intense sunlight, high temperature and light winds. Elevated O3 levels were also found to correlate with enhanced ratio of SO2 to NOx, suggesting influence of regional emissions from the adjacent Pearl River Delta region. 相似文献
12.
《Atmospheric environment (Oxford, England : 1994)》2007,41(28):5994-6004
Hong Kong's persistent unhealthy level of fine particulate matter is a current public health challenge, complicated by the city being located in the rapidly industrializing Pearl River Delta Region of China. While the sources of the region's fine particulate matter (PM2.5) are still not well understood, this study provides new source information through ground measurements and statistical analysis of 24 elements associated with particulate matter collected on filters. Field measurements took place over 4 months (October 2002, December 2002, March 2003, and June 2003) at seven sites throughout the Pearl River Delta, with three sites located in Hong Kong and four sites in the neighboring province, Guangdong. The 4-month average element concentrations show significant variation throughout the region, with higher levels of nearly every species seen among the northern Guangdong sites in comparison to Hong Kong. The high correlation (Pearson r>0.8) and similar magnitudes of 11 species (Al, Si, S, K, Ca, Mn, Fe, Zn, Br, Rb, and Pb) at three contrasting sites in Hong Kong indicate that sources external to Hong Kong dominate the regional levels of these elements. Further correlative analysis compared Hong Kong against potential source areas in Guangdong Province (Shenzhen, Zhongshan, and Guangzhou). Moderate correlation of sulfur for all pairings of Hong Kong sites with three Guangdong sites in developed areas (average Pearson r of 0.52–0.94) supports the importance of long-distance transport impacting the region as a whole, although local sources also clearly impact observed concentrations. Varying correlative characteristics for zinc when Hong Kong sites are paired with Shenzhen (average r=0.86), Guangzhou (average r=−0.65) and Zhongshan (average r=0.45) points to a source area located south of Guangzhou and locally impacting Zhongshan. The concentration distribution and correlative characteristics of bromide point to sources located within the Pearl River Delta, but the specific location is yet inconclusive. Uniquely poor correlation of eight species (Al, Si, K, Ca, Mn, Fe, Rb, and Pb) for the pairing of Hong Kong sites with Guangzhou, in addition to the relatively higher concentrations measured at Guangzhou, indicates a significant regional impact due to land development and industrial activities in the Guangzhou vicinity. 相似文献
13.
《Atmospheric environment (Oxford, England : 1994)》2005,39(19):3549-3563
Due to the complexity of the underlying surface, urban boundary layers may exhibit very different wind-temperature field structures compared with rural areas. In this study, an urban boundary layer model with a resolution of 500 m is applied to Hong Kong, a place characterized by complex topography with high mountains and dense urban developments. Five surface land use types are considered; grass and shrub land, trees, water, old urban areas and new town developments. The urban boundary layer model is embedded into the National Center for Atmospheric Research (NCAR) Mesoscale Model, version 5 (MM5). The initial and boundary conditions are obtained from the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis dataset. The modeling approach therefore takes into account both the mesoscale background field and the urban underlying surface. The model is applied to the simulation of a pollution episode in Hong Kong. Results show good agreement with meteorological data for the surface winds and temperature. The model successfully simulates the urban heat island and the occurrence of a sea–land breeze circulation, and their impact on air pollutant transport and dispersion. 相似文献
14.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong 总被引:21,自引:0,他引:21
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong. 相似文献
15.
《Atmospheric environment (Oxford, England : 1994)》2007,41(2):432-447
Rapid urbanization and industrialization in South China has placed great strain on the environment and on human health. In the present study, the total suspended particulate matter (TSP) in the urban and suburban areas of Hong Kong and Guangzhou, the two largest urban centres in South China, was sampled from December 2003 to January 2005. The samples were analysed for the concentrations of major elements (Al, Fe, Mg and Mn) and trace metals (Cd, Cr, Cu, Pb, V and Zn), and for Pb isotopic composition. Elevated concentrations of metals, especially Cd, Pb, V and Zn, were observed in the urban and suburban areas of Guangzhou, showing significant atmospheric trace element pollution. Distinct seasonal patterns were observed in the heavy metal concentrations of aerosols in Hong Kong, with higher metal concentrations during the winter monsoon period, and lower concentrations during summertime. The seasonal variations in the metal concentrations of the aerosols in Guangzhou were less distinct, suggesting the dominance of local sources of pollution around the city. The Pb isotopic composition in the aerosols of Hong Kong had higher 206Pb/207Pb and 208Pb/207Pb ratios in winter, showing the influence of Pb from the northern inland areas of China and the Pearl River Delta (PRD) region, and lower 206Pb/207Pb and 208Pb/207Pb ratios in summer, indicating the influence of Pb from the South Asian region and from marine sources. The back trajectory analysis showed that the enrichment of heavy metals in Hong Kong and Guangzhou was closely associated with the air mass from the north and northeast that originated from northern China, reflecting the long-range transport of heavy metal contaminants from the northern inland areas of China to the South China coast. 相似文献
16.
A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week. 相似文献
17.
《Atmospheric environment (Oxford, England : 1994)》2001,35(34):5949-5960
Polycyclic aromatic hydrocarbons (PAHs) and carbonyls compounds are becoming a major component of atmospheric toxic air pollutants (TAPs) in Hong Kong. Many studies in Hong Kong show that traffic emission is one of the most significant contributors in urban area of Hong Kong. A twelve months monitoring program for PAHs and carbonyl compounds started on 10 April 1999 including a two weeks intensive sampling in winter had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the monthly and seasonal variations of PAHs and carbonyl concentrations. The objective of this study is to characterize the roadside concentrations of selected TAPs (PAHs and carbonyl compounds) and to compare with the long-term compliance monitoring data acquired by Hong Kong Environmental Protection Department (EPD). Monthly variations, seasonal variations and winter/summer ratios at the monitoring station are discussed. 相似文献
18.
A.A. Karanasiou P.A. Siskos K. Eleftheriadis 《Atmospheric environment (Oxford, England : 1994)》2009,43(21):3385-3395
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM10 and PM2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data. 相似文献
19.
20.
Steve H.L. Yim Jimmy C.H. Fung Alexis K.H. Lau 《Atmospheric environment (Oxford, England : 1994)》2010,44(38):4850-4858
Recent research has highlighted the substantial health-related costs of air pollution in the Hong Kong Special Administrative Region (HKSAR) and the potential threat from air pollution to HKSARs economic competitiveness. In order to address the air pollution problems, this paper seeks to analyse the individual contributions of major sulphur dioxide (SO2) sources in the Pearl River Delta Region (PRDR) (Pearl River Delta + HKSAR) on the air quality in the HKSAR. This study employed the coupling of the MM5/CALMET system with the CALPUFF, the multi-layer, non-steady-state puff dispersion model, where major power plants, marine vessels and vehicles, all in the PRDR, are taken into account. The observation data and simulation results at 11 Hong Kong Environmental Protection Department (HKEPD) general (non-road-side) stations are analyzed. Urban (in-zone) and Rural (out-zone) stations are defined in order to examine the SO2 contribution of different emission sources in different regions of the HKSAR. The model results show that the contribution of the HKSAR marine sources is significant both in summer and in winter, especially for the locations around the in-zone stations (in general 60%, and 55% in summer and winter respectively). In addition, the contribution of the HKSAR power plants is slightly higher than that of the PRD power plants in early summer, with a contribution difference of up to 20% when the prevailing wind is from the south. However, in late summer, this situation reverses. In winter, the contribution of the PRD power plants is two to three times greater than that of the HKSAR power plants. Moreover, Yantian port affects the northern part of the HKSAR when a northeasterly wind dominates the HKSAR. In order to solve these air pollution problems, the main implication of these results suggests that the HKSAR government, in close co-operation with the Guangdong government, needs to take immediate action. 相似文献