首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies investigating effects of personal, demographic, housing and other factors on exposures to volatile organic compounds (VOC) have focused on mean or median exposures, and generally not the high exposures that are of great interest. This paper identifies determinants of personal VOC exposures on a quantile-specific basis using a nationally representative sample. The NHANES 1999–2000 VOC dataset was merged with personal, demographic, housing, smoking and occupation variables. Bivariate analyses tested for differences in geometric means and quantiles across levels of potential exposure determinants. Multivariate sample-weighted ordinary least-squares (OLS) and quantile regression (QR) models were then used to adjust for covariates. We identify a number of exposure determinants, most of which varied by exposure quantile. The most striking finding was the much higher exposures experienced by Hispanics and Blacks for aromatic VOCs (BTEX: benzene, toluene, ethylbenzene and xylenes), methyl tert-butyl ether (MTBE), and 1,4-dichlorobenzene (DCB). Exposure to gasoline, paints or glues, and having a machine-related occupation also were associated with extremely high BTEX and MTBE exposures. Additional determinants included the presence of attached garages and open windows, which affected exposures of BTEX (especially at lower quantiles) and MTBE (especially at higher quantiles). Smoking also increased BTEX exposures. DCB was associated with air freshener use, and PERC with dry-cleaned clothing. After adjusting for demographic, personal and housing factors, age and gender were not significant predictors of exposure. The use of QR in conjunction with OLS yields a more complete picture of exposure determinants, and identifies subpopulations and heterogeneous exposure groups in which some individuals experience very elevated exposures and which are not well represented by changes in the mean. The high exposures of Hispanics and Blacks are perplexing and disturbing, and they warrant further investigation.  相似文献   

2.
Risk factors for increased BTEX exposure in four Australian cities   总被引:2,自引:0,他引:2  
Benzene, toluene, ethylbenzene and xylenes (BTEX) are common volatile organic compounds (VOCs) found in urban airsheds. Elevated levels of VOCs have been reported in many airsheds at many locations, particularly those associated with industrial activity, wood heater use and heavy traffic. Exposure to some VOCs has been associated with health risks. There have been limited investigations into community exposures to BTEX using personal monitoring to elucidate the concentrations to which members of the community may be exposed and the main contributors to that exposure. In this cross sectional study we investigated BTEX exposure of 204 non-smoking, non-occupationally exposed people from four Australian cities. Each participant wore a passive BTEX sampler over 24h on five consecutive days in both winter and summer and completed an exposure source questionnaire for each season and a diary for each day of monitoring. The geometric mean (GM) and range of daily BTEX concentrations recorded for the study population were benzene 0.80 (0.04-23.8 ppb); toluene 2.83 (0.03-2120 ppb); ethylbenzene 0.49 (0.03-119 ppb); and xylenes 2.36 (0.04-697 ppb). A generalised linear model was used to investigate significant risk factors for increased BTEX exposure. Activities and locations found to increase personal exposure included vehicle repair and machinery use, refuelling of motor vehicles, being in an enclosed car park and time spent undertaking arts and crafts. A highly significant difference was found between the mean exposures in each of the four cities, which may be explained by differences in fuel composition, differences in the mix and density of industry, density of motor vehicles and air pollution meteorology.  相似文献   

3.
EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10–100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.  相似文献   

4.
Personal 48-hr exposures to formaldehyde and acetaldehyde of 15 randomly selected participants were measured during the summer/autumn of 1997 using Sep-Pak DNPH-Silica cartridges as a part of the EXPOLIS study in Helsinki, Finland. In addition to personal exposures, simultaneous measurements of microenvironmental concentrations were conducted at each participant's residence (indoor and outdoor) and workplace. Mean personal exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb for acetaldehyde. Personal exposures were systematically lower than indoor residential concentrations for both compounds, and ambient air concentrations were lower than both indoor residential concentrations and personal exposure levels. Mean workplace concentrations of both compounds were lower than mean indoor residential concentrations. Correlation between personal exposures and indoor residential concentrations was statistically significant for both compounds. This indicated that indoor residential concentrations of formaldehyde and acetaldehyde are a better estimate of personal exposures than are concentrations in ambient air. In addition, a time-weighted exposure model did not improve the estimation of personal exposures above that obtained using indoor residential concentrations as a surrogate for personal exposures. Correlation between formaldehyde and acetaldehyde was statistically significant in outdoor microenvironments, suggesting that both compounds have similar sources and sinks in ambient urban air.  相似文献   

5.
Revealing source signatures in ambient BTEX concentrations   总被引:2,自引:0,他引:2  
Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations.  相似文献   

6.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

7.
The Southern California Children's Health Study (CHS) investigated the relationship between air pollution and children's chronic respiratory health outcomes. Ambient air pollutant measurements from a single CHS monitoring station in each community were used as surrogates for personal exposures of all children in that community. To improve exposure estimates for the CHS children, we developed an Individual Exposure Model (IEM) to retrospectively estimate the long-term average exposure of the individual CHS children to CO, NO2, PM10, PM2.5, and elemental carbon (EC) of ambient origin. In the IEM, pollutant concentrations due to both local mobile source emissions (LMSE) and meteorologically transported pollutants were taken into account by combining a line source model (CALINE4) with a regional air quality model (SMOG). To avoid double counting, local mobile sources were removed from SMOG and added back by CALINE4. Limited information from the CHS survey was used to group each child into a specific time-activity category, for which corresponding Consolidated Human Activity Database (CHAD) time-activity profiles were sampled. We found local traffic significantly increased within-community variability of exposure to vehicle-related pollutants. PM-associated exposures were influenced more by meteorologically transported pollutants and local non-mobile source emissions than by LMSE. The overall within-community variability of personal exposures was highest for NO2 (±20–40%), followed by EC (±17–27%), PM10 (±15–25%), PM2.5 (±15–20%), and CO (±9–14%). Between-community exposure differences were affected by community location, traffic density, and locations of residences and schools in each community. Proper siting of air monitoring stations relative to emission sources is important to capture community mean exposures.  相似文献   

8.
Abstract

This study presents the Individual Based Exposure Modeling (IBEM) application of MENTOR (Modeling ENvironment for TOtal Risk studies) in a hot spot area, where there are concentrated local sources on the scale of tens to hundreds of meters, and an urban reference area in Camden, NJ, to characterize the ambient concentrations and personal exposures to benzene and toluene from local ambient sources. The emission-based ambient concentrations in the two neighborhoods were first estimated through atmospheric dispersion modeling. Subsequently, the calculated and measured ambient concentrations of benzene and toluene were separately combined with the time-activity diaries completed by the subjects as inputs to MENTOR/IBEM for estimating personal exposures resulting from ambient sources. The modeling results were then compared with the actual personal measurements collected from over 100 individuals in the field study to identify the gaps in modeling personal exposures in a hot spot. The modeled ambient concentrations of benzene and toluene were generally in agreement with the neighborhood measurements within a factor of 2, but were underestimated at the high-end percentiles. The major local contributors to the benzene ambient levels are from mobile sources, whereas mobile and stationary (point and area) sources contribute to the toluene ambient levels in the study area. This finding can be used as guidance for developing better air toxic emission inventories for characterizing, through modeling, the ambient concentrations of air toxics in the study area. The estimated percentage contributions of personal exposures from ambient sources were generally higher in the hot spot area than the urban reference area in Camden, NJ, for benzene and toluene. This finding demonstrates the hot spot characteristics of stronger local ambient source impacts on personal exposures. Non-ambient sources were also found as significant contributors to personal exposures to benzene and toluene for the population studied.  相似文献   

9.
Volatile organic compounds in selected micro-environments   总被引:1,自引:0,他引:1  
A program of sampling for volatile organic compounds (VOCs) in ambient air was undertaken in selected locations and micro-environments in Perth, Western Australia to characterise concentrations of target VOCs and to determine the relative strength of the contributing sources to ambient air in different micro-environments in a major Australian city. Twenty-seven locations were sampled and, of the forty-one target compounds, 26 VOCs were detected in the samples collected. The highest concentrations were recorded for benzene, toluene, ethylbenzene, xylenes (BTEX), chloroform and styrene. The maximum 12-h toluene and benzene concentrations observed were from a basement carpark and were 24.7 parts per billion (ppb) and 5.6 ppb, respectively. The maximum xylenes concentration was 29.4 ppb and occurred in a nightclub where styrene was also detected. A factor analysis of the data was undertaken. Two key factors emerge that appear to be associated with petroleum and motor vehicles and environmental tobacco smoke. A third significant occurrence was a high concentration of chloroform that was observed at a sports centre complex with a swimming pool text and was uncorrelated with other compounds in the data set. This study indicates that locations associated with motor vehicles and petrol fuel, tobacco and wood smoke and chlorinated water represent the major risks for personal exposure to VOCs in Perth.  相似文献   

10.
Personal exposure measurement can serve as an effective tool to understand the effect of exposure to air pollutants. Alternatively, exposure assessment using pollutant concentrations in different microenvironments and accurate time–activity information for the subjects can provide good information regarding human integrated exposure. A panel of 18 healthy students of Indian Institute of Technology (IIT) Kanpur in the age group of 18 to 30 years participated in the personal exposure measurements for particulate matter, CO, NO2 and VOC during post-monsoon and pre-monsoon seasons. Overall, 432 h person exposure data was collected in this study. The major sources of particulate and gaseous co-pollutants were identified. These directly obtained personal exposure values were then compared to the indirectly estimated integrated exposure values. Personal and integrated exposures gave statistically similar results. Through this study, we have shown that integrated exposure values could closely estimate the personal exposure values for particulate matter that can significantly reduce time and cost involved in personal exposure studies. The lung parameters for all the subjects measured during the pre-monsoon and post-monsoon seasons showed statistically significant reduction during pre-monsoon. This was attributed to the high levels of coarse particles during pre-monsoon.  相似文献   

11.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

12.
Benzene typically contributes a significant fraction of the human cancer risk associated with exposure to urban air pollutants. In recent years, concentrations of benzene in ambient air have declined in many urban areas due to the use of reformulated gasolines, lower vehicle emissions, and other control measures. In the California South Coast Air Basin (SoCAB) ambient benzene concentrations have been reduced by more than 70% since 1989. To estimate the resulting effect on human exposures, the Regional Human Exposure (REHEX) model was used to calculate benzene exposures in the SoCAB for the years 1989 and 1997. Benzene concentration distributions in 14 microenvironments (e.g. outdoor, home, vehicle, work) were combined with California time-activity patterns and census data to calculate exposure distributions for 11 demographic groups in the SoCAB. For 1997, the calculated average benzene exposure for nonsmoking adults in the SoCAB was 2 ppb, compared to 6 ppb for 1989. For nonsmokers, about half of the 1997 exposure was due to ambient air concentrations (including their contributions to other microenvironments), but only 4% for smokers. Passive tobacco smoke contributed about one-fourth of all exposure for adult nonsmokers. In-transit microenvironments and attached garages contributed approximately 15 and 10%, respectively. From 1989 to 1997, decreases in passive smoke exposure accounted for about one-sixth of the decrease in exposure for nonsmoking adults, with the remainder due to decreases in ambient concentrations. The reductions in exposure during this time period indicate the effectiveness of reformulated fuels, more stringent emission standards, and smoking restrictions in significantly reducing exposure to benzene.  相似文献   

13.
This study was set out to assess the contents of five volatile organic compounds (VOCs), including BTEX (the acronym for benzene, toluene, ethylbenzene, and xylene) and methyl tertiary-butyl ether (MTBE), in three types of tollbooth (including the car lane/ticket-collecting, car lane/cash-collecting, and bus/truck lane tollbooths) at a highway toll station via the direct and indirect approaches. For the direct approach, VOC samples were collected from the breathing zone of booth attendants at all selected tollbooths during the three workshifts. For samples collected during the dayshift, we found VOC contents of BTEX and MTBE in both the car lane/ticket-collecting (=6.23, 21.93, 3.24, 8.56, and 5.63 ppb, respectively) and car lane/cash-collecting tollbooths (=5.98, 21.71, 3.25, 8.59, and 6.04 ppb, respectively) were quite comparable, but both were significantly higher than that in the bus/truck lane tollbooth (=3.13, 13.91, 2.05, 4.52, and 2.70 ppb, respectively). The same pattern can also be found for the other two workshifts. For the indirect approach, we conducted multivariate regression analyses to predict VOC contents for any given type of tollbooth by using the four independent variables of the vehicle flowrate, wind speed, relative humidity, and air temperature. We found that, except the vehicle flowrate, the other three factors did not have a significant effect on VOC contents in the three types of tollbooth. In addition, the magnitudes of the effect of the vehicle flowrate on VOC contents for the three types of tollbooth were: car lane/cash-collecting>bus/truck lane>car lane/ticket-collecting. All regression results yielded R2-values in the range of 0.41−0.74 indicating that the developed indirect approach was able to predict VOC contents for three types of tollbooth.  相似文献   

14.
The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes.

Implications: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.  相似文献   


15.
The U.S. EPA carried out a study of personal exposures to 26 volatile organic chemicals in the air, drinking water, and exhaled breath of 188 California residents in 1984. Sixteen chemicals were often found above quantifiable limits in the personal air samples, but only the four trihalomethanes were often found in drinking water. The highest exposures were to 1,1,1-trichloroethane, para-dichlorobenzene, xylenes, benzene, and tetrachloroethylene. Indoor air concentrations generally exceeded outdoor air concentrations, particularly at the higher percentiles. Breath concentrations of eight chemicals showed significant correlations with preceding personal air concentrations in the two visits to Los Angeles. Smoking, employment, and automobile-related activities were identified as important sources of personal exposure to a number of target compounds.  相似文献   

16.
Abstract

An ozone (O3) exposure assessment study was conducted in Toronto, Ontario, Canada during the winter and summer of 1992. A new passive O3 sampler developed by Harvard was used to measure indoor, outdoor, and personal O3 concentrations. Measurements were taken weekly and daily during the winter and summer, respectively. Indoor samples were collected at a total of 50 homes and workplaces of study participants. Outdoor O3 concentrations were measured both at home sites using the passive sampler and at 20 ambient monitoring sites with continuous monitors. Personal O3 measurements were collected from 123 participants, who also completed detailed time-activity diaries. A total of 2,274 O3 samples were collected. In addition, weekly air exchange rates of homes were measured.

This study demonstrates the performance of our O3 sampler for exposure assessment. The data obtained are further used to examine the relationships between personal, indoor (home and workplace), and outdoor O3 concentrations, and to investigate outdoor and indoor spatial variations in O3 concentrations. Based on home outdoor and indoor, workplace, and ambient O3 concentrations measured at the Ontario Ministry of the Environment (MOE) sites, the traditional microenvironmental model predicts 72% of the variability in measured personal exposures. An alternative personal O3 exposure model based on outdoor measurements and time-activity information is able to predict the mean personal exposures in a large population, with the highest R2 value of 0.41.  相似文献   

17.
Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as “indoor at home.” By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.  相似文献   

18.
Zou SC  Lee SC  Chan CY  Ho KF  Wang XM  Chan LY  Zhang ZX 《Chemosphere》2003,51(9):1015-1022
Ambient air monitoring was conducted at Datianshan landfill, Guangzhou, South China in 1998 to investigate the seasonal and horizontal variations of trace volatile organic compounds (VOCs). Twelve sampling points over the Datianshan landfill were selected and samples were collected simultaneously using Carbontrap(TM) adsorption tubes. Thirty eight VOCs were detected in the winter, whereas 60 were detected in the summer. The VOC levels measured in summer were alkanes, 0.5-6.5 microg/m(3); aromatics, 2.3-1667 microg/m(3); chlorinated species, 0.2-31 microg/m(3); terpines, 0.1-34 microg/m(3); carbonyl species, 0.3-5.6 microg/m(3) and naphthalene and its derivatives, 0.4-27 microg/m(3). Compared to the summer samples the VOC levels in winter were much lower (mostly 1-2 orders of magnitude lower). The aromatics are dominant VOCs in landfill air both in winter and summer. High levels of alkylbenzene and terpines such as methyl-isopropylbenzene (max 1667 microg/m(3)) and limonene (max 162 microg/m(3)) cause undesirable odor. The similar correlation coefficients of BTEX in summer and winter suggest VOCs emissions were from landfill site sources. The variation of BTEX ratio at landfill site is different from that in the urban area of Guangzhou. It shows that the ambient VOCs at landfill site were different from the urban areas.  相似文献   

19.
Commuter exposures to VOCs in Boston, Massachusetts.   总被引:4,自引:0,他引:4  
This study examines the commuter's exposure to six gasoline-related volatile organic compounds (VOCs): benzene, toluene, ethylbenzene, m-/p-xylene, o-xylene, and formaldehyde. The VOC concentrations to which commuters were exposed in four different commuting modes (driving, subway, walking, and biking) in Boston, Massachusetts, are compared. The VOC concentrations in participants' homes and offices were also measured. Factors that could influence in-vehicle VOC concentrations, such as different traffic patterns, car model and vehicle ventilation conditions, were also evaluated. Driving a private car was associated with higher VOC concentrations and commuting on urban roadways resulted in the highest VOC concentrations. The use of car heaters resulted in higher in-vehicle VOC concentrations. The longer the subway commuters stayed underground, the higher their VOC exposures. The home-to-work car or subway commute represented about 10 to 20 percent of an individual's total VOC exposure for these compounds.  相似文献   

20.
An ozone (O3) exposure study was conducted in Nashville, TN, using passive O3 samplers to measure six weekly outdoor, indoor, and personal O3 exposure estimates for a group of 10- to 12-yr-old elementary school children. Thirty-six children from two Nashville area communities (Inglewood and Hendersonville) participated in the O3 sampling program, and 99 children provided additional time-activity information by telephone interview. By design, this study coincided with the 1994 Nashville/Middle Tennessee Ozone Study conducted by the Southern Oxidants Study, which provided enhanced continuous ambient O3 monitoring across the Nashville area. Passive sampling estimated weekly average outdoor O3 concentrations from 0.011 to 0.O30 ppm in the urban Inglewood community and from 0.015 to 0.042 ppm in suburban Hendersonville. The maximum 1- and 8-hr ambient concentrations encountered at the Hendersonville continuous monitor exceeded the levels of the 1- and 8-hr metrics for the O3 National Ambient Air Quality Standard. Weekly average personal O3 exposures ranged from 0.0013 to 0.0064 ppm (7-31% of outdoor levels). Personal O3 exposures reflected the proportional amount of time spent in indoor and outdoor environments. Air-conditioned homes displayed very low indoor O3 concentrations, and homes using open windows and fans for ventilation displayed much higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号