首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, a correction was developed for the aethalometer to measure real-time black carbon (BC) concentrations in an environment dominated by fresh diesel soot. The relationship between the actual mass-specific absorption coefficient for BC and the BC-dependent attenuation coefficients was determined from experiments conducted in a diesel exposure chamber that provided constant concentrations of fine particulate matter (PM; PM(2.5); PM < 2.5 microm in aerodynamic diameter) from diesel exhaust. The aethalometer reported BC concentrations decreasing with time from 48.1 to 31.5 microg m(-3) when exposed to constant PM(2.5) concentrations of 55 +/- 1 microg m(-3) and b(scat) = 95 +/- 3 Mm(-1) from diesel exhaust. This apparent decrease in reported light-absorbing PM concentration was used to derive a correction K(ATN) for loading of strong light-absorbing particles onto or into the aethalometer filter tape, which was a function of attenuation of light at 880 nm by the embedded particles.  相似文献   

2.
Abstract

In this study, a correction was developed for the aethalometer to measure real-time black carbon (BC) concentrations in an environment dominated by fresh diesel soot. The relationship between the actual mass-specific absorption coefficient for BC and the BC-dependent attenuation coefficients was determined from experiments conducted in a diesel exposure chamber that provided constant concentrations of fine particulate matter (PM; PM2.5; PM <2.5 µm in aerodynamic diameter) from diesel exhaust. The aethalometer reported BC concentrations decreasing with time from 48.1 to 31.5 µg m?3when exposed to constant PM2.5concentrations of 55 ± 1 µg m?3and bscat= 95 ± 3 Mm?1from diesel exhaust. This apparent decrease in reported light-absorbing PM concentration was used to derive a correction K(ATN) for loading of strong light-absorbing particles onto or into the aethalometer filter tape, which was a function of attenuation of light at 880 nm by the embedded particles.  相似文献   

3.
Abstract

An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibility of this vehicle as a source of diesel emissions. Exhaust was supplied to a specially constructed exposure chamber at a target concentration of 100 µg · m-3 diesel particulate matter (DPM). Spatial variability within the chamber was negligible, whereas emission concentrations were stable, reproducible, and similar to concentrations observed on the dynamometer. Measurements of nitric oxide, nitrogen dioxide, carbon monoxide, particulate matter (PM), elemental and organic carbon, carbonyls, trace elements, and polycyclic aromatic hydrocarbons were made during exposures of both healthy and asthmatic volunteers to DPM and control conditions. The effect of the so-called “personal cloud” on total PM mass concentrations was also observed and accounted for. Conventional lung function tests in 11 volunteer subjects (7 stable asthmatic) did not demonstrate a significant change after 2-hr exposures to diesel exhaust. In summary, we demonstrated that this facility can be effectively and safely used to evaluate acute responses to diesel exhaust exposure in human volunteers.  相似文献   

4.
An idling medium-duty diesel truck operated on ultralow sulfur diesel fuel was used as an emission source to generate diesel exhaust for controlled human exposure. Repeat tests were conducted on the Federal Test Procedure using a chassis dynamometer to demonstrate the reproducibility of this vehicle as a source of diesel emissions. Exhaust was supplied to a specially constructed exposure chamber at a target concentration of 100 microg x m(-3) diesel particulate matter (DPM). Spatial variability within the chamber was negligible, whereas emission concentrations were stable, reproducible, and similar to concentrations observed on the dynamometer. Measurements of nitric oxide, nitrogen dioxide, carbon monoxide, particulate matter (PM), elemental and organic carbon, carbonyls, trace elements, and polycyclic aromatic hydrocarbons were made during exposures of both healthy and asthmatic volunteers to DPM and control conditions. The effect of the so-called "personal cloud" on total PM mass concentrations was also observed and accounted for. Conventional lung function tests in 11 volunteer subjects (7 stable asthmatic) did not demonstrate a significant change after 2-hr exposures to diesel exhaust. In summary, we demonstrated that this facility can be effectively and safely used to evaluate acute responses to diesel exhaust exposure in human volunteers.  相似文献   

5.
To evaluate the effectiveness of various means to combat the negative health effects of ultrafine particles emitted by internal combustion engines, a reliable, low-cost instrument for dynamic measurements of the exhaust emissions of ultrafine particulate matter (PM) is needed. In this study, an ordinary ionization-type building smoke detector was modified to serve as a measuring ionization chamber and utilized for dynamic measurements of PM emissions from diesel engines. When used with diluted exhaust, the readings show an excellent correlation with total particulate length. The instrument worked well with raw and diluted exhaust and with varying emission levels and is well suitable for on-board use.  相似文献   

6.
ABSTRACT

Road traffic is one of the main sources of particulate matter (PM) in the atmosphere. Despite its importance, there are significant challenges in the quantitative evaluation of its contribution to airborne concentrations. In order to propose effective mitigation scenarios, the proportions of PM traffic emissions, whether they are exhaust or non-exhaust emissions, should be evaluated for any given geographical location. In this work, we report on the first study to evaluate particulate matter emissions from all registered heavy duty diesel vehicles in Qatar. The study was applied to an active traffic zone in urban Doha. Dust samples were collected and characterized for their shape and size distribution. It was found that the particle size ranged from few to 600 μm with the dominance of small size fraction (less than 100 μm). In-situ elemental composition analysis was conducted for side and main roads traffic dust, and compared with non-traffic PM. The results were used for the evaluation of the enrichment factor and preliminary source apportionment. The enrichment factor of anthropogenic elements amounted to 350. The traffic source based on sulfur elemental fingerprint was almost 5 times higher in main roads compared with the samples from non-traffic locations. Moreover, PM exhaust and non-exhaust emissions (tyre wear, brake wear and road dust resuspension) were evaluated. It was found that the majority of the dust was generated from tyre wear with 33% followed by road dust resuspension (31%), brake wear (19%) and then exhaust emissions with 17%. The low contribution of exhaust PM10 emissions was due to the fact that the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies.

Implication: This study reports on the first results related to the evaluation of PM emission from all registered diesel heavy duty vehicles in Qatar. In-situ XRF elemental analysis from main, side roads as well as non-traffic dust samples was conducted. Several characterization techniques were implemented and the results show that the majority of the dust was generated from tyre wear, followed by road dust resuspension and then brake wear; whereas exhaust emissions were tremendously reduced since the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies. This implies that policy makers should place stringent measures on old vehicle license renewals and encourage the use of metro and public transportation.  相似文献   

7.
Emissions from diesel-powered construction equipment are an important source of nitrogen oxides (NOx) and particulate matter (PM). A new emission inventory for construction equipment emissions is developed based on surveys of diesel fuel use; the revised inventory is compared to current emission inventories. California's OFFROAD model estimates are 4.5 and 3.1 times greater, for NOx and PM respectively, than the fuel-based estimates developed here. The most relevant uncertainties are the overall amount of construction activity/diesel fuel use, exhaust emission factors for PM and NOx, and the spatial allocation of emissions to county level and finer spatial scales. Construction permit data were used in this study to estimate spatial distributions of emissions; the resulting distribution is well correlated with population growth. An air quality model was used to assess the impacts of revised emission estimates. Increases of up to 15 ppb in predicted peak ozone concentrations were found in southern California. Elemental carbon and fine particle mass concentrations were in better agreement with observations using revised emission estimates, whereas negative bias in predictions of ambient NOx concentrations increased.  相似文献   

8.
The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.  相似文献   

9.
建立了一种具有较强实用性的介质阻挡放电等离子体反应器试验装置.借助静态试验研究其放电特性,通过发动机台架试验探讨了利用低温等离子体处理柴油机2种主要有害排放物NOx和PM的效果和化学反应机理,并通过模拟试验作了处理PM的进一步验证.试验结果表明,放电功率对于低温等离子体活性成分的产生有重要影响,应当优选放电参数以获得高的放电功率从而达到更好的处理效果;采用低温等离子体处理柴油机排气,NOx总量变化不大,主要将NO转化成NO2;低温等离子体可以有效去除柴油机排气中的PM,去除率随能量密度的增大而提高.  相似文献   

10.
The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine.  相似文献   

11.
A factor analytic model has been applied to resolve and apportion particles based on submicron particle size distributions downwind of a United States-Canada bridge in Buffalo, NY. The sites chosen for this study were located at gradually increasing distances downwind of the bridge complex. Seven independent factors were resolved, including four factors that were common to all of the five sites considered. The common factors were generally characterized by the existence of two or more number and surface area modes. The seven factors resolved were identified as follows: fresh tail-pipe diesel exhaust, local/street diesel traffic, aged/evolved diesel particles, spark-ignition gasoline emissions, background urban emissions, heavy-duty diesel agglomerates, and secondary/transported material. Submicron (<0.5 microm) and ultrafine (<0.1 microm) particle emissions downwind of the bridge were dominated by commercial diesel truck emissions. Thus, this study obtained size distinction between fresh versus aged vehicle exhaust and spark-ignition versus diesel emissions based on the measured high time-resolution particle number concentrations. Because this study mainly used particles <300 nm in diameter, some sources that would usually exhibit number modes >100 nm were not resolved. Also, the resolved profiles suggested that the major number mode for fresh tailpipe diesel exhaust might exist below the detection limit of the spectrometer used. The average particle number contributions from the resolved factors were highest closest to the bridge.  相似文献   

12.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

13.
Diesel engine emissions are composed of a long list of organic compounds, ranging from C2 to C12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic.The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed.Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed.The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.  相似文献   

14.
Composition of exhaust from a ship diesel engine using heavy fuel oil (HFO) was investigated onboard a large cargo vessel. The emitted particulate matter (PM) properties related to environmental and health impacts were investigated along with composition of the gas-phase emissions. Mass, size distribution, chemical composition and microphysical structure of the PM were investigated. The emission factor for PM was 5.3 g (kg fuel)?1. The mass size distribution showed a bimodal shape with two maxima: one in the accumulation mode with mean particle diameter DP around 0.5 μm and one in the coarse mode at DP around 7 μm. The PM composition was dominated by organic carbon (OC), ash and sulphate while the elemental carbon (EC) composed only a few percent of the total PM. Increase of the PM in exhaust upon cooling was associated with increase of OC and sulphate. Laser analysis of the adsorbed phase in the cooled exhaust showed presence of a rich mixture of polycyclic aromatic hydrocarbon (PAH) species with molecular mass 178–300 amu while PM collected in the hot exhaust showed only four PAH masses.Microstructure and elemental analysis of ship combustion residuals indicate three distinct morphological structures with different chemical composition: soot aggregates, significantly metal polluted; char particles, clean or containing minerals; mineral and/or ash particles. Additionally, organic carbon particles of unburned fuel or/and lubricating oil origin were observed. Hazardous constituents from the combustion of heavy fuel oil such as transitional and alkali earth metals (V, Ni, Ca, Fe) were observed in the PM samples.Measurements of gaseous composition in the exhaust of this particular ship showed emission factors that are on the low side of the interval of global emission factors published in literature for NOx, hydrocarbons (HC) and CO.  相似文献   

15.
The primary emission source contributions to fine organic carbon (OC) and fine particulate matter (PM2.5) mass concentrations on a daily basis in Atlanta, GA, are quantified for a summer (July 3 to August 4, 2001) and a winter (January 2-31, 2002) month. Thirty-one organic compounds in PM2.5 were identified and quantified by gas chromatography/mass spectrometry. These organic tracers, along with elemental carbon, aluminum, and silicon, were used in a chemical mass balance (CMB) receptor model. CMB source apportionment results revealed that major contributors to identified fine OC concentrations include meat cooking (7-68%; average: 36%), gasoline exhaust (7-45%; average: 21%), and diesel exhaust (6-41%; average: 20%) for the summer month, and wood combustion (0-77%; average: 50%); gasoline exhaust (14-69%; average: 33%), meat cooking (1-14%; average: 5%), and diesel exhaust (0-13%; average: 4%) for the winter month. Primary sources, as well as secondary ions, including sulfate, nitrate, and ammonium, accounted for 86 +/- 13% and 112 +/- 15% of the measured PM2.5 mass in summer and winter, respectively.  相似文献   

16.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   

17.
ABSTRACT

Diesel particulate matter (PM) is a significant contributor to ambient air PM10 and PM2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.  相似文献   

18.
In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

19.
The purpose of this project was to investigate the relationship of ambient air quality measurements between two analytical methods, referred to as the total oxidant method and the chemiluminescent method. These two well documented analytical methods were run simultaneously, side by side, at a site on the Houston ship channel. They were calibrated daily. The hourly averages were analyzed by regression techniques and the confidence intervals were calculated for the regression lines. Confidence intervals for point estimates were also calculated. These methods were used with all data sets with values greater than 10 parts per billion and again with values greater than 30 parts per billion. A regression line was also calculated for a second set of data for the preceding year. These data were generated before a chromium triox-ide scrubber was installed to eliminate possible chemical interferences with the Kl method.

The results show that in general the chemiluminescent ozone method tends to produce values as much as two times higher than the simultaneous total oxidant values. In one set of data collected an 80 ppb chemiluminescent ozone value predicted a value of 43.9 ppb total oxidant with a 95% confidence interval of 7.7 to 80.4 ppb. In the second set of data an 80 ppb chemiluminescent ozone value predicted a value of 78 ppb total oxidant with a 95% confidence interval of 0.4 to 156 ppb. Other statistical analyses confirmed that either measurement was a very poor predictor of the other.  相似文献   

20.
The California Air Resources Board, CARB, has participated in a program to quantify particulate matter (PM) emissions with a European methodology, which is known as the Particulate Measurement Programme (PMP). The essence of the PMP methodology is that the diesel PM from a Euro 4 vehicle equipped with a Diesel Particulate Filter (DPF) consists primarily of solid particles with a size range greater than 23 nm. The PMP testing and the enhanced testing performed by CARB have enabled an increased understanding of both the progress that has been made in PM reduction, and the future remaining challenges for new and improved DPF-equipped diesel vehicles. A comparison of measured regulated emissions and solid particle number emissions with the results obtained by the PMP participating international laboratories was a success, and CARB’s measurements and standard deviations compared well with the other laboratories. Enhanced measurements of the influence of vehicle conditioning prior to testing on PM mass and solid particle number results were performed, and some significant influences were discovered. For example, the influence of vehicle preconditioning on particle number results was significant for both the European and USA test driving cycles. However, the trends for the cycles were opposite with one cycle showing an increase and the other cycle showing a decrease in particle number emissions. If solid particle size distribution and total particle numbers are to be used as proposed in PMP, then a greater understanding of the quality and errors associated with measurement technologies is advisable.In general, particle counting instruments gave results with similar trends, but cycle-to-cycle testing variation was observed. Continuous measurements of particle number concentrations during test cycles have given detailed insight into PM generation. At the present time there is significant variation in the capabilities of the particle counting instruments in terms of particle size and concentration.Current measurements show the existence of a large number of volatile and semi-volatile particles of yet-to-be-resolved chemical composition in diesel exhaust, especially during DPF regeneration, and these particles are not included in the PMP methodology because they are smaller than 20 nm. It will be very challenging to improve our understanding of this class of diesel particulate matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号