首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Air quality sensors are becoming increasingly available to the general public, providing individuals and communities with information on fine-scale, local air quality in increments as short as 1 min. Current health studies do not support linking 1-min exposures to adverse health effects; therefore, the potential health implications of such ambient exposures are unclear. The U.S. Environmental Protection Agency (EPA) establishes the National Ambient Air Quality Standards (NAAQS) and Air Quality Index (AQI) on the best science available, which typically uses longer averaging periods (e.g., 8 hr; 24 hr). Another consideration for interpreting sensor data is the variable relationship between pollutant concentrations measured by sensors, which are short-term (1 min to 1 hr), and the longer term averages used in the NAAQS and AQI. In addition, sensors often do not meet federal performance or quality assurance requirements, which introduces uncertainty in the accuracy and interpretation of these readings. This article describes a statistical analysis of data from regulatory monitors and new real-time technology from Village Green benches to inform the interpretation and communication of short-term air sensor data. We investigate the characteristics of this novel data set and the temporal relationships of short-term concentrations to 8-hr average (ozone) and 24-hr average (PM2.5) concentrations to examine how sensor readings may relate to the NAAQS and AQI categories, and ultimately to inform breakpoints for sensor messages. We consider the empirical distributions of the maximum 8-hr averages (ozone) and 24-hr averages (PM2.5) given the corresponding short-term concentrations, and provide a probabilistic assessment. The result is a robust, empirical comparison that includes events of interest for air quality exceedances and public health communication. Concentration breakpoints are developed for short-term sensor readings such that, to the extent possible, the related air quality messages that are conveyed to the public are consistent with messages related to the NAAQS and AQI.

Implications: Real-time sensors have the potential to provide important information about fine-scale current air quality and local air quality events. The statistical analysis of short-term regulatory and sensor data, coupled with policy considerations and known health effects experienced over longer averaging times, supports interpretation of such short-term data and efforts to communicate local air quality.  相似文献   


2.
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

3.
To provide a scientific basis for the selection and use of continuous monitors for exposure and/or health effects studies, and for compliance and episode measurements at strategic locations in the State of New Jersey, we evaluated the performance of seven continuous fine particulate matter (PM2.5) monitors in the present study. Gravimetric samplers, as reference methods, were collocated with realtime instruments in both laboratory and field tests. The results of intercomparison of real-time monitors showed that the two nephelometers used in this study correlated extremely well (r2 approximately 0.97), and two tapered element oscillating monitors (TEOM 1400 and TEOM filter dynamics measurement system [FDMS]) correlated well (r2 > 0.85), whereas two beta gauges displayed a weaker correlation (r2 < 0.6). During a summertime controlled (laboratory) evaluation, the measurements made with the gravimetric method correlated well with the 24-hr integrated measurements made with the real-time monitors. The SidePak nephelometer overestimated the particle concentration by a factor of approximately 3.4 compared with the gravimetric method. During a summertime field evaluation, the TEOM FDMS monitor reported approximately 30% higher mass concentration than the Federal Reference Method (FRM); and the difference could be explained by the loss of semi-volatile materials from the FRM sampler. Results also demonstrated that 24-hr average PM2.5 mass concentrations measured by beta gauges and TEOM (50 degrees C) in winter correlated well with the integrated gravimetric method. Seasonal differences were observed in the performance of the TEOM (50 degrees C) monitor in measuring the particle mass attributed to the higher semi-volatile material loss in the winter weather. In applying the realtime particulate matter monitoring data into Air Quality Index (AQI) reporting, the Conroy method and the 8-hr end-hour average method were both found to be suitable.  相似文献   

4.
Abstract

Air quality monitoring was conducted at a rural site with a tower in the middle of California’s San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/M2.5 Air Quality Study. Measurements at the surface and on a tower at 90 m were collected in Angiola, CA, from ecember 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

5.
The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a "test bed" for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5-29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency's Air Quality System network.  相似文献   

6.
Air quality in cities is the result of a complex interaction between natural and anthropogenic environmental conditions. Delhi, as well as many other cities in India, is facing problems concerning air pollution. The increase in industrialisation and the vehicle fleet, poor control on emissions and little use of catalytic converters, produce a great amount of particulate and toxic gases. Data on air pollutants and meteorological variables were collected in the metropolitan cities Delhi, Kolkata, Mumbai and Chennai for the period July–August, 2001. Data were treated with the bivariate regression model to explore the influence of the meteorological variables on air pollutant concentrations, and were also used to compute an Air Quality Index, using the weighted arithmetic mean method. The proposed index seems to be applicable in the assessment of overall air quality with respect to air pollutants.  相似文献   

7.
Abstract

The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a “test bed” for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5–29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency’s Air Quality System network.  相似文献   

8.
Continuous measurements of particle number concentrations were performed in Rochester, NY, and Toronto, Ontario, Canada during the 2003 calendar year. Strong seasonal dependency in particle number concentration was observed at two sites. The average number concentration of ambient particles was 9670 +/- 6960 cm(-3) in Rochester, whereas in Toronto the average number of particles was 28,010 +/- 13,350 cm(-3). The particle number concentrations were higher in winter months than in summer months by a factor of 1.5 in Rochester and 1.6 in Toronto. In general, there were also distinct diurnal variations of aerosol number concentration. The highest weekdays/weekends ratio of number concentration was typically observed during the rush-hour period in winter months with a ratio of 2.1 in Rochester and 2.0 in Toronto. The correlation in the total particle number concentrations between the two urban sites was stronger in winter because of the common urban traffic patterns, but weaker in summer because of local sulfur dioxide (SO2)-related particle formation events in Rochester in the summer. Strong morning particle formation events were frequently observed during colder winter months. Good correlations between particle number and carbon monoxide (CO) as well as temperature suggested that motorvehicle emissions lead to the formation of new particles as the exhaust mixes with the cold air. Regional nucleation and growth events frequently occurred in April. Local SO2-related particle formation events most frequently occurred in August. SO2 and UV-B were highly correlated with particle concentration, suggesting a high association of photochemical processes with these local events. A high directionality in a northerly direction was observed for particle number and SO2, indicating the influence of point sources located north of Rochester.  相似文献   

9.
Meteorological dispersion modeling and pine trees used as "integrating monitors" were used to consider the probable source of a phytotoxic pollutant producing symptoms previously un-reported in the literature. Two sources, a chemical plant (A) and a fabric finishing plant (B) north of Raleigh, NC, were considered using the Air Quality Display Model (AQDM). Using the ability of this model to accommodate extra receptors corresponding to "monitoring" sites, we found good correlation between observed injury and predicted relative concentrations due to assumed emissions from source A. The poor agreement between predicted and observed injury if source B alone were modeled (or both sources together) suggested that source A alone emitted the causal agent.  相似文献   

10.
Three modeling approaches, the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) zero-out, the Comprehensive Air quality Model with extensions (CAMx) zero-out, and the CAMx probing tools ozone source apportionment tool (OSAT), were used to project the contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The CMAQ and CAMx zero-out or brute-force approaches predicted generally similar contributions for most of the source categories, with some small differences. One of the important findings from this study was that both the CMAQ and CAMx zero-out approaches tended to apportion a larger contribution to the “other” category than the OSAT approach. For the OSAT approach, this category is the difference between the total emissions and the sum of the tracked emissions and consists of non-U.S. emissions. For the zero-out approach, it also includes the effects of nonlinearities in the system because the sum of the sensitivities of all sources is not necessarily equal to the sum of their contributions in a nonperturbed environment. The study illustrates the strengths and weaknesses of source apportionment approaches, such as OSAT, and source sensitivity approaches, such as zero-out. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease at all the selected monitors for all the simulations in each city, except at the downtown Los Angeles monitor. Both the CMAQ and CAMx results showed all modeled locations project attainment in 2018 and 2030 to the current National Ambient Air Quality Standards (NAAQS) level of 75 ppb, except the selected Los Angeles monitor in 2018 and the selected San Bernardino monitor in 2018 and 2030.
Implications:This study illustrates the strengths and weaknesses of three modeling approaches, CMAQ zero-out, CAMx zero-out, and OSAT to project contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease, except at the downtown Los Angeles monitor. Comparing projections with the current NAAQS (75 ppb) show attainment everywhere, except two locations in 2018 and one location in 2030.  相似文献   

11.
A modeling tool that can resolve contributions from individual sources to the urban environment is critical for air-toxics exposure assessments. Air toxics are often chemically reactive and may have background concentrations originated from distant sources. Grid models are the best-suited tools to handle the regional features of these chemicals. However, these models are not designed to resolve pollutant concentrations on local scales. Moreover, for many species of interest, having reaction time scales that are longer than the travel time across an urban area, chemical reactions can be ignored in describing local dispersion from strong individual sources making Lagrangian and plume-dispersion models practical. In this study, we test the feasibility of developing an urban hybrid simulation system. In this combination, the Community Multi-scale Air Quality model (CMAQ) provides the regional background concentrations and urban-scale photochemistry, and local models such as Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) and AMS/EPA Regulatory Model (AERMOD) provide the more spatially resolved concentrations due to local emission sources. In the initial application, the HYSPLIT, AERMOD, and CMAQ models are used in combination to calculate high-resolution benzene concentrations in the Houston area. The study period is from 18 August to 4 September of 2000. The Mesoscale Model 5 (MM5) is used to create meteorological fields with a horizontal resolution of 1×1 km2. In another variation to this approach, multiple HYSPLIT simulations are used to create a concentration ensemble to estimate the contribution to the concentration variability from point sources. HYSPLIT simulations are used to model two sources of concentration variability; one due to variability created by different particle trajectory pathways in the turbulent atmosphere and the other due to different flow regimes that might be introduced when using gridded data to represent meteorological data fields. The ensemble mean concentrations determined by HYSPLIT plus the concentrations estimated by AERMOD are added to the CMAQ calculated background to estimate the total mean benzene concentration. These estimated hourly mean concentrations are also compared with available field measurements.  相似文献   

12.
A receptor model for predicting future PM10 concentrations has been developed within the framework of the UK Airborne Particles Expert Group and applied during the recently completed review of the UK National Air Quality Strategy. The model uses a combination of measured PM10, oxides of nitrogen and particulate sulphate concentrations to provide daily estimates of the contributions to total particle concentrations from primary combustion, secondary and other (generally coarse) particle sources. Projections of past and future concentrations of PM10 are estimated by applying appropriate reductions to the current concentrations of the three components based on an understanding of the likely impact of current policies on future levels. Projections have been derived from 1996, 1997 and 1998 monitoring data and compared with UK national air quality objectives and European Union limit values. One of the key uncertainties within the receptor modelling method is the assignment of the residual PM10, remaining after the assignment of primary combustion and secondary particle contributions, to the ‘other’ particle fraction. An examination of the difference between measured PM10 and PM2.5 concentrations confirms our assignment of the bulk of this residual to coarse particles. Projections based on 1996 monitoring data are the highest and those based on 1998 monitoring data are the lowest. Whilst there is considerable difference between these projections they are consistent with measured concentrations for previous years. All three projections suggest that with current agreed policies the EU annual mean limit value will be achieved. The 24-h mean limit value is projected to be achievable when projections are derived from 1997 and 1998 data, but not from 1996 data. All three projections suggest that with current agreed policies the central London site will not achieve the provisional 1997 UK National Air Quality Strategy objective.  相似文献   

13.
Air concentrations of polychlorinated biphenyls (PCBs) in both gas and particle phases were measured in an urban site (BUTAL-Merinos) of the city of Bursa, Turkey between August 2004 and May 2005. The mean of total (particle+gas) PCB concentrations was about 491.8+/-189.4pg/m(3). The main contributors for PCBs in the sampling site were the local sources and long-range atmospheric transport supported by back trajectory analysis. Lower molecular weight PCB congeners generally dominated in the samples. The particle phase of the measured PCBs accounted for 15% of the total PCB concentrations. Gas/particle distribution was investigated using different approaches such as log K(P)-log P(L)(o), log K(P)-log K(OA) and the Junge-Pankow model. Regression analysis among log K(P), log P(L)(o) and log K(OA) exhibited significant correlation at p<0.05. Correlation between PCB homologs and meteorological parameters was formed to investigate the possible relationships.  相似文献   

14.
Environmental Science and Pollution Research - Through a variety of media formats, the Air Quality Health Index (AQHI) has served as a valuable communication tool for the general Canadian...  相似文献   

15.
In 1997, Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 microm in aerodynamic diameter (PM23), but did have annual ambient data for PM smaller than 10 microm (PM10) at 24 sites. The PM10 data were analyzed in conjunction with local annual and seasonal zip-code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks, wildlife refuges, and wilderness areas) in an effort to estimate annual average and seasonal high PM2.5 concentrations at the 24 PM10 monitor sites operating from 1992 to 1996. All seasonal high concentrations were estimated to be below the 24-hr PM2.5 National Ambient Air Quality Standards (NAAQS) at the sites operating in Maryland between 1992 and 1996. The estimates also indicated that 12 monitor sites might exceed the 3-year annual average PM2.5 NAAQS of 15 microg/m3, but Maryland's air quality shows signs that it has been improving since 1992. The estimates also were compared with actual measurements after the PM2.5 monitor network was installed. The estimates were adequate for describing the chemical composition of the PM2.5, forecasting compliance status with the 24-hr and annual standards, and determining the spatial variations in PM2.5 across central Maryland.  相似文献   

16.
A periodic review of the National Ambient Air Quality Standards for Particulate Matter by the U.S. Environmental Protection Agency (EPA) will assess the standards with respect to levels, particle size, and averaging times. Some members of the scientific community in the United States and Europe have suggested the use of PM1 instead of PM2.5 as the fine particle measurement standard. This proposed standard is intended to reduce the influence of coarse particle sources on PM2.5, because some evidence suggests that PM1-2.5 is dominated by coarse particulate matter (PM) sources. In this study, coarse (PM2.5-10), intermodal (PM1-2.5), and fine (PM2.5) mass concentrations at four different sites are measured with continuous and time-integrated sampling devices. The main objective is to compare variations in these three size ranges while considering the effects of location, sources, weather, wind speed, and wind direction. Results show strong correlations between PM1 and intermodal PM in receptor sites. The contribution of PM1-2.5 to PM2.5 is highest in the summer months, most likely due to enhanced long-range transport. Coarse PM is poorly correlated with intermodal PM. Continuous data suggest that PM1 is growing into PM1-2.5 via complex processes involving stagnation of the aerosol during high relative humidity conditions, followed by advection during daytime hours.  相似文献   

17.
Particulate mass concentration measurements have been made on environmental tobacco smoke (ETS) for the purpose of assessing the relative accuracy of several measurement procedures. ETS over a range of concentrations was generated in an environmental chamber by three methods. Mass concentration was measured by a gravimetric/spectrophotometric collection procedure, piezoelectric particle mass monitors, two nephelometry-based mass monitors, and a particle counting and sizing system. Two-hour average mass concentrations were determined by each method for concentrations ranging from very low levels up to those achieved by smoking one entire cigarette in the chamber. Statistical comparisons were made among procedures employing the gravimetric filter measurement as the basis for comparison. One nephelometry-based procedure gave significantly higher and the other significantly lower values than the filter determination. In one case, a correction for the difference between the particle mass density of the calibrating aerosol and that of ETS brought the nephelometry-based procedure into reasonable agreement with the filter measurement, while for the other, the correction did not resolve the discrepancy between methods. Statistically significant differences between the responses of two supposedly identical piezoelectric mass monitors were found, as was some slight dependence of the nephelometry- based procedures on method of ETS generation. In summary, the results indicate that significant errors can be expected if the instruments studied are used “off the shelf,” even for ETS generated under controlled laboratory conditions. Caution should be employed in field measurements where numerous sources and types of particulate matter can be encountered.  相似文献   

18.
In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases. The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area's inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   

19.
A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

20.
The Denver Air Quality Modeling Study (DAQMS) is a comprehensive modeling effort originally undertaken to apportion sources of visibility degradation and examine the visibility benefits of future emission strategies in the Denver metropolitan area. Because of the detailed treatment of the chemical and physical processes and high temporal, vertical, and horizontal resolution of the system, it is possible to examine other air-related issues and their relationships to visibility. The DAQMS analysis system consists of the Denver Air Quality Model (DAQM), a three-dimensional Eulerian chemical-transport model including aerosol and gas-phase transport and transformation processes, a three-dimensional mesoscale meteorological modeling system, visibility analysis procedures, and an emissions processing system. DAQM, the meteorological model, and the emissions information operate on a domain covering approximately the entire state of Colorado with 8-km grid resolution and 15 vertical levels from the surface to the stratosphere. Analysis from a winter visibility episode illustrates the differences between spatial and temporal distributions of light extinction, fine and coarse particle aerosol concentrations, oxidants, and carbon monoxide under various emission scenarios. Studies aimed at exploring interrelationships between these air quality concerns for different seasons, meteorological conditions, and emission management scenarios are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号