共查询到20条相似文献,搜索用时 15 毫秒
2.
Cold season (winter and thaw) CH 4, CO 2 and N 2O fluxes from freshwater marshes (47°35′N, 133°31′E, Northeast China) were measured, using the static chamber method. The mean CH 4 and CO 2 fluxes from Carex lasiocarpa (Cl) were 0.5 ± 0.19 and 6.23 ± 1.36 mg C m −2 h −1, respectively, and those from Deyeuxia angustifoli (Da) were 0.18 ± 0.15 and 5.22 ± 2.48 mg C m −2 h −1, respectively in winter. There was no significant difference between Cl and Da ( p > 0.05). The contributions of winter CH 4 fluxes were about 5.5% and 3% in the Cl and Da, respectively. Marshes are an important potential N 2O sink in winter season in northeast China. During thaw, the CH 4 and CO 2 emissions rapidly increased, 4.5–6 times of winter emissions. Wetland became a source of N 2O. Cold season gases flux from northern wetlands play an important role in the seasonal gas exchange. 相似文献
4.
Spartina alterniflora, a perennial grass with C(4)-photosynthesis, shows great invading potential in the coastal ecosystems in the east of China. We compared trace gas emissions from S. alterniflora with those from a native C(3) plant, Phragmites australis, by establishing brackish marsh mesocosms to experimentally assess the effects of plant species (S. alterniflora vs. P. australis), flooding status (submerged vs. non-submerged), and clipping (plants clipped or not) on trace gas emissions. The results show that trace gas emission rates were higher in S. alterniflora than P. australis mesocosms due to the higher biomass and density of the former, which could fix more available substrates to the soil and potentially emit more trace gases. Meanwhile, trace gas emission rates were higher in non-submerged than submerged soils, suggesting that water might act as a diffusion barrier in the brackish marsh mesocosms. Interestingly, methane (CH(4)) emission rates were lower in clipped non-submerged mesocosms than in non-clipped submerged mesocosms, but nitrous oxide (N(2)O) emissions were enhanced. CH(4) emissions were significantly correlated with the plant biomass and stem density (R(2)>0.48, P<0.05) for both species, suggesting that both the two species might play important roles in CH(4) production and transport and also act as suppliers of easily available substrates for the methanogenic bacteria in wetland ecosystems. N(2)O emissions, however, were not significantly correlated with plant biomass and density (P>0.05). 相似文献
5.
Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p < 0.01), 3.56 ( p < 0.01), and 2.12 ( p < 0.01) from the soil samples preincubated with 5% CH 4 for three months when compared with the control, respectively. Among the three selected landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p < 0.001). N 2O fluxes were also elevated by the increase of the CH 4 emissions with landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 μg N 2O–N m ?2 h ?1 ( p < 0.01) from sandy soil–covered landfill site, which was 72% ( p < 0.05) and 173% ( p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions. 相似文献
6.
High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH 4 retention, 99.8% (CH 4 mean flux of 12 mg C m -2 h -1) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m -2 h -1) of the same landfill age. Fresh waste at the working face emitted a large fraction of N 2O, with average fluxes of 10 mg N m -2 h -2, while N 2O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH 4 emissions were elevated under high air temperatures but decreased as landfill age increased. N 2O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO 2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr -1 in CO 2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH 4 (41.9%), while the working face contributed the most N 2O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control. Implications: Monitoring of GHG emissions at three different cover types in a municipal solid waste landfill during a 1-year period showed that the working face was a hotspot of N2O, which should draw attention. High CH4 fluxes occurred on the permeable surface covering a 1- to 2-year-old landfill. In contrast, the high-density polyethylene (HDPE) membrane achieved high CH4 retention, and therefore is a recommended cover material for GHG control. 相似文献
7.
Patches of dung and urine are major contributors to the feedlot gas emissions. This study investigated the impacts of dung deposition frequency (partly reflecting animal stocking density of a feedlot), dairy feedlot floor conditions (old floor indicated with the presence of consolidated manure pad [CMP] vs. new floor with the absence of consolidated manure pad [CMPn]), and application of dicyandiamide (DCD) and hydroquinone (HQ) on nitrous oxide (N 2O) and methane (CH 4) emissions from patches in the laboratory, and the integrative impacts were expressed in terms of global warming potential (CO 2-equivalent). Dung deposition frequency, feedlot floor condition, and application of inhibitors showed inverse impacts on N 2O and CH 4 emissions from patches. Greenhouse gas (GHG) emissions from the dung, urine, and dung+urine patches on the CMP feedlot surface were approximately 7.48, 87.35, and 7.10 times those on the CMPn feedlot surface ( P < 0.05). Meanwhile, GHG emissions from CMP and CMPn feedlot surfaces under high deposition frequency condition were approximately 10 and 1.7 times those under low-frequency condition. Moreover, application of HQ slightly reduced the GHG emission from urine patches, by 14.9% ( P > 0.05), while applying DCD or DCD+HQ significantly reduced the GHG, by 60.3% and 65.0%, respectively ( P < 0.05). Overall, it is necessary to include feedlot management such as animal stocking density and feedlot floor condition to the process of determining emission factors for feedlots. In the future, field measurements to quantitatively evaluate the relative contribution of nitrification and denitrification to the N 2O emissions of feedlot surfaces are highly required for effective N 2O control. Implications: This study shows that feedlot CH4 and N2O emissions inversely respond to the dicyandiamide (DCD) application. Applying DCD significantly reduces GHG emissions of feedlot urine patches. Feedlot floor condition and stocking density strongly impact feedlot GHG emissions. Including feedlot floor condition and stocking density in the feedlot EF determining process is necessary. 相似文献
8.
Water management is one of the most important practices that affect methane (CH 4) and nitrous oxide (N 2O) emissions from paddy fields. A field experiment was designed to study the effects of controlled irrigation (CI) on CH 4 and N 2O emissions from paddy fields, with traditional irrigation (TI) as the control. The effects of CI on CH 4 and N 2O emissions from paddy fields were very clear. The peaks of CH 4 emissions from the CI paddies were observed 1-2 d after the water layer disappeared. Afterward, the emissions reduced rapidly and remained low until the soil was re-flooded. A slight increase of CH 4 emission was observed in a short period after re-flooding. N 2O emissions peaks from CI paddies were all observed 8-10 d after the fertilization at the WFPS ranging from 78.1% to 85.3%. Soil drying caused substantial N 2O emissions, whereas no substantial N 2O emissions were observed when the soil was re-wetted after the dry phase. Compared with TI, the cumulative CH 4 emissions from the CI fields were reduced by 81.8% on the average, whereas the cumulative N 2O emissions were increased by 135.4% on the average. The integrative global warming potential of CH 4 and N 2O on a 100-year horizon decreased by 27.3% in the CI paddy fields, whereas no significant difference in the rice yield was observed between the CI and TI fields. These results suggest that CI can effectively mitigate the integrative greenhouse effect caused by CH 4 and N 2O emissions from paddy fields while ensuring the rice yield. 相似文献
9.
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites. 相似文献
10.
Greenhouse gas emissions from hydroelectric dams have recently given rise to controversies about whether hydropower still provides clean energy. China has a large number of dams used for energy supply and irrigation, but few studies have been carried out on aquatic nitrous oxide (N 2O) variation and its emissions in Chinese river-reservoir systems. In this study, N 2O spatiotemporal variations were investigated monthly in two reservoirs along the Wujiang River, Southwest China, and the emission fluxes of N 2O were estimated. N 2O production in the reservoirs tended to be dominated by nitrification, according to the correlation between N 2O and other parameters. N 2O saturation in the surface water of the Wujiangdu reservoir ranged from 214% to 662%, with an average fluctuation of 388%, while in the Hongjiadu reservoir, it ranged from 201% to 484%, with an average fluctuation of 312%. The dissolved N 2O in both reservoirs was over-saturated with respect to atmospheric equilibrium levels, suggesting that the reservoirs were net sources of N 2O emissions to the atmosphere. The averaged N 2O emission flux in the Wujiangdu reservoir was 0.64 μmol m ?2 h ?1, while it was 0.45 μmol m ?2 h ?1 in the Hongjiadu reservoir, indicating that these two reservoirs had moderate N 2O emission fluxes as compared to other lakes in the world. Downstream water of the dams had quite high levels of N 2O saturation, and the estimated annual N 2O emissions from hydropower generation were 3.60 × 10 5 and 2.15 × 10 5 mol N 2O for the Wujiangdu and the Hongjiadu reservoir, respectively. These fluxes were similar to the total N 2O emissions from the reservoir surfaces, suggesting that water released from reservoirs would be another important way for N 2O to diffuse into the atmosphere. It can be concluded that dam construction significantly changes the water environment, especially in terms of nutrient status and physicochemical conditions, which have obvious influences on the N 2O spatiotemporal variations and emissions. 相似文献
12.
Denitrification is an important N removal process in aquatic systems but is also implicated as a potential source of global N 2O emissions. However, the key factors controlling this process as well as N 2O emissions remain unclear. In this study, we identified the main factors that regulate the production of net N 2 and N 2O in sediments collected from rivers with a large amount of sewage input in the Taihu Lake region. Net N 2 and N 2O production were strongly associated with the addition of NO 3 ?-N and NH 4 +-N. Specifically, NO 3 ?-N controlled net N 2 production following Michaelis–Menten kinetics. The maximum rate of net N 2 production ( V max) was 116.3 μmol N 2-N m ?2 h ?1, and the apparent half-saturation concentration ( k m) was 0.65 mg N L ?1. N 2O to N 2 ratios increased from 0.18?±?0.03 to 0.68?±?0.16 with the addition of NO 3 ?-N, suggesting that increasing NO 3 ?-N concentrations favored the production of N 2O more than N 2. The addition of acetate enhanced net N 2 production and N 2O to N 2 ratios, but the ratios decreased by about 59.5 % when acetate concentrations increased from 50 to 100 mg C L ?1, suggesting that the increase of N 2O to N 2 ratios had more to do with the net N 2 production rate rather than acetate addition in this experiment. The addition of Cl ? did not affect the net N 2 production rates, but significantly enhanced N 2O to N 2 ratios (the ratios increased from 0.02?±?0.00 to 0.10?±?0.00), demonstrating that the high salinity effect might have a significant regional effect on N 2O production. Our results suggest that the presence of N-enriching sewage discharges appear to stimulate N removal but also increase N 2O to N 2 ratios. 相似文献
13.
The fluxes of N2O emission from and CH4 uptake by the typical semi-arid grasslands in the Inner Mongolia, China were measured in 1998-1999. Three steppes, i.e. the ungrazed Leymus chinensis (LC), the moderately grazed Leymus chinensis (LC) and the ungrazed Stipa grandis (SG), were investigated, at a measurement frequency of once per week in the growing seasons and once per month in the non-growing seasons of the LC steppes. In addition, four diurnal-cycles of the growing seasons of the LC steppes, each in an individual stage of grass growth, were measured. The investigated steppes play a role of source for the atmospheric N2O and sink for the atmospheric CH4, with a N2O emission flux of 0.06-0.21 kg N ha(-1) yr(-1) and a CH4 uptake flux of 1.8-2.3 kg C ha(-1) yr(-1). Soil moisture primarily and positively regulates the spatial and seasonal variability of N2O emission. The usual difference in soil moisture among various semi-arid steppes does not lead to significantly different CH4 uptake intensities. Soil moisture, however, negatively regulates the seasonal variability in CH4 uptake. Soil temperature of the most top layer might be the primary driving factor for CH4 uptake when soil moisture is relatively low. The annual net emission of N2O and CH4 from the ungrazed LC steppe, the moderately grazed LC steppe and the ungrazed SG steppe is at a CO2 equivalent rate of 7.7, 0.8 and -7.5 kg CO2-C ha(-1) yr(-1), respectively, which is at an ignorable level. This implies that the role of the semi-arid grasslands in the atmospheric greenhouse effect in terms of net emission of greenhouse gases (CO2, CH4 and N2O) may exclusively depend upon the net exchange of net ecosystem CO2 exchange. 相似文献
14.
The problem of producing strong greenhouse gas of nitrous oxide (N2O) from biological nitrogen removal (BNR) process in wastewater treatment plants (WWTP) has elicited great concern from various sectors. In this study, three laboratory-scale wastewater treatment systems, with influent C/N ratios of 3.4, 5.4, and 7.5, were set up to study the effect of influent C/N ratio on N2O generation in anaerobic/anoxic/oxic (A2O) process. Results showed, with the increased influent C/N ratio, N2O generation from both nitrification and denitrification process was decreased, and the N2O-N conversion ratio of the process was obviously reduced from 2.23 to 0.05%. Nitrification rate in oxic section was reduced, while denitrification rate in anaerobic and anoxic section was elevated and the removal efficiency of COD, NH4
+-N, TN, and TP was enhanced in different extent. As the C/N ratio increased from 3.4 to 7.5, activities of three key denitrifying enzymes of nitrate reductase, nitrite reductase, and nitrous oxide reductase were increased. Moreover, microorganism analysis indicated that the relative abundance of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were positively correlated with N2O generation, which was reduced from (8.42 ± 3.65) to (3.61 ± 1.66)% and (10.38 ± 4.12) to (4.67 ± 1.62)%, respectively. NosZ gene copy numbers of the A2O system were increased from (1.19 ± 0.49) × 107 to (2.84 ± 0.54) × 108 copies/g MLSS with the influent C/N ratio elevated from 3.4 to 7.5. Hence, appropriate influent C/N condition of A2O process could optimize the microbial community structure that simultaneously improve treatment efficiency and decrease the N2O generation. 相似文献
15.
通过对气相色谱仪进样、分析气路和阀驱动系统的改造 ,同一台色谱仪可以同时检测空气样品中的CO2 、CH4和N2 O。测试结果表明 ,仪器的灵敏度、分辨率和精密度均很高 ,线性范围符合要求 ;仪器系统能够在野外实验室长期稳定运转 ,可方便用于测定陆地生态系统CO2 、CH4和N2 O排放 ,能快速、准确、可靠地获取观测数据。 相似文献
16.
Fertilized agricultural soils are a major anthropogenic source of atmospheric N 2O. A credible national inventory of agricultural N 2O emission would benefit its global strength estimate. We compiled a worldwide database of N 2O emissions from fertilized fields that were consecutively measured for more than or close to one year. Both nitrogen input (N) and precipitation (P) were found to be largely responsible for temporal and spatial variabilities in annual N 2O fluxes (N 2O–N). Thus, we established an empirical model (N 2O–N = 1.49 P + 0.0186 P · N), in which both emission factor and background emission for N 2O were rectified by precipitation. In this model, annual N 2O emission consists of a background emission of 1.49 P and a fertilizer-induced emission of 0.0186 P · N. We used this model to develop a spatial inventory at the 10 × 10 km scale of direct N 2O emissions from agriculture in China. N 2O emissions from rice paddies were separately quantified using a cropping-specific emission factor. Annual fertilizer-induced N 2O emissions amounted to 198.89 Gg N 2O–N in 1997, consisting of 18.50 Gg N 2O–N from rice paddies and 180.39 Gg N 2O–N from fertilized uplands. Annual background emissions and total emissions of N 2O from agriculture were estimated to be 92.78 Gg N 2O–N and 291.67 Gg N 2O–N, respectively. The annual direct N 2O emission accounted for 0.92% of the applied N with an uncertainty of 29%. The highest N 2O fluxes occurred in East China as compared with the least fluxes in West China. 相似文献
18.
Emissions of CO, N 2O and NO x from combustion are estimated using a common set of demographic, economic and regulatory assumptions. The estimates represent a sum of emissions from six large geographical regions in which energy use was predicted using an economic forecasting model. Analysis was performed for 1960, 1975, 2000 and 2025. Future global CO emissions from combustion are likely to decrease because of regulation in the developed nations and fuel-switching in the developing nations. Future global N 2O and NO x combustion emissions are likely to increase unless there is new regulation. The greatest uncertainties in emission estimates arise from not knowing the energy paths China and other developing nations will follow in the pursuit of economic development. 相似文献
19.
An increasing nitrogen deposition experiment (2 g N m ?2 year ?1) was initiated in an alpine meadow on the Qinghai-Tibetan Plateau in May 2007. The greenhouse gases (GHGs), including CO 2, CH 4 and N 2O, was observed in the growing season (from May to September) of 2008 using static chamber and gas chromatography techniques. The CO 2 emission and CH 4 uptake rate showed a seasonal fluctuation, reaching the maximum in the middle of July. We found soil temperature and water-filled pore space (WFPS) were the dominant factors that controlled seasonal variation of CO 2 and CH 4 respectively and lacks of correlation between N 2O fluxes and environmental variables. The temperature sensitivity ( Q10) of CO 2 emission and CH 4 uptake were relatively higher (3.79 for CO 2, 3.29 for CH 4) than that of warmer region ecosystems, indicating the increase of temperature in the future will exert great impacts on CO 2 emission and CH 4 uptake in the alpine meadow. In the entire growing season, nitrogen deposition tended to increase N 2O emission, to reduce CH 4 uptake and to decrease CO 2 emission, and the differences caused by nitrogen deposition were all not significant ( p < 0.05). However, we still found significant difference ( p < 0.05) between the control and nitrogen deposition treatment at some observation dates for CH 4 rather than for CO 2 and N 2O, implying CH 4 is most susceptible in response to increased nitrogen availability among the three greenhouse gases. In addition, we found short-term nitrogen deposition treatment had very limited impacts on net global warming potential (GWP) of the three GHGs together in term of CO 2-equivalents. Overall, the research suggests that longer study periods are needed to verify the cumulative effects of increasing nitrogen deposition on GHG fluxes in the alpine meadow. 相似文献
20.
Environmental Science and Pollution Research - Production of the greenhouse gas nitrous oxide (N2O) from the completely autotrophic nitrogen removal over nitrite (CANON) process is of growing... 相似文献
|