首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the auspices of Project METROMEX, studies of visibility de-teoration downwind of St. Louis were conducted during July-August 1974-1975. Estimates of horizontal visual range, standard meteorological data, and aerosol characteristics within the mixing layer were acquired upwind, over, and downwind of the metropolitan area by means of airborne transects. Aerosol number, surface, and volume distributions for particles between 0.025-2.5 µm were generated from the airborne measurement of Aitken nucleus concentrations, cloud condensation nuclei, and aerosols detected in situ with optical probes. Visibility reduction amounting to 50% of prevailing regional upwind visibilities consistently occurs at a distance corresponding to 2-3 hours travel time downwind for an air parcel moving with the mean transport wind. The regions of visibility minimum do not coincide with locations of maximum Aitken nucleus concentrations, but rather correspond in space and time to increased values of cloud condensation nuclei and increased numbers of particles in the 0.1-2.5 µm diameter range. Comparisons of observed aerosol evolution with similar laboratory studies suggest that most of the light scattering aerosols are of secondary origin.  相似文献   

2.
In this article, numerical simulations and observational analyses have been made for the aerosol episode that occurred over the Pearl River Delta (PRD) region in China during 1–3 November 2003. An air quality modeling system that consisted of the mesoscale model MM5, chemical transport model MODELS-3/CMAQ, and air pollutant emission model SMOKE, was employed. Studies have shown that this particulate matter (PM) pollution episode was apparently associated with the activity of tropical cyclone (TC) Melor. Model simulations revealed that Melor spawned this PM episode through dynamic and thermodynamic processes. The strong compensating subsidence induced by Melor's peripheral circulations created favorable meteorological conditions that enhanced local aerosol pollution. This strong downward motion produced significant adiabatic warming (2–4 °C daily) and dramatic drying in the low-level troposphere over the PRD. As a result, the PRD region was blanketed with a dry and warm air layer that strengthened the static stability of the lower troposphere. The descending motion also tended to dramatically lower the heights of the planetary boundary layer (PBL) through its dynamic effect. The fair weather created by this synoptic pattern further intensified the nocturnal temperature inversions through enhanced radiative cooling. All of these factors promoted a stagnant local atmosphere with very light winds near the surface. The horizontal and vertical dispersions of locally emitted aerosol particles were largely suppressed, leading to the accumulation of large amounts of PMs near local emission sources in the PRD region. As Melor drew near, changes in surface winds strengthened the horizontal transport of aerosol particles from inland sources to the area of Hong Kong downstream. This horizontal advection greatly contributed to the high PM10 (particulate matters less than 10 μm in diameters) concentrations in Hong Kong.  相似文献   

3.
Study of the vertical concentration profile and of the deposition of cosmogenic radionuclides provides information on the vertical transport in the stratosphere and troposphere and the processes of scavenging of aerosol particles by precipitation. Information on the distribution of atmospheric aerosols is important for the understanding of the physical processes relating to the studies in weather climate, air pollution, and aerosol physics. In this work the one-dimensional steady-state model of vertical concentration profile was established and the values of turbulent diffusion coefficient and scavenging coefficient determined by model using experimental data of the 7Be monthly average atmospheric activity concentrations and monthly deposition fluxes in Bratislava are presented. The temporal variations of the vertical distribution profiles of 7Be for each month are also calculated.  相似文献   

4.
As a part of the effort to understand the structure of long-range transported aerosol plumes and local pollution, aerosol observations monitored the mass concentrations and number-size distributions during the period August 2006 to July 2009 near the top of Mt. Haruna (1365 m), an isolated mountain in the Kanto Plain in Japan. The mass concentrations observed at Mt. Haruna and plain sites showed a seasonal variation with a maximum in spring and summer, respectively. The spring peaks in aerosols at Mt. Haruna were probably caused by long-range transport of mineral dust and anthropogenic particles from the Asian continent. The summer peaks at the plain sites was attributed to local pollution from the Tokyo metropolitan area. Three examples of 2007 Asian dust events were investigated to show that aerosols may be dispersed in a complicated three-dimensional structure and that delayed arrivals of the dust plumes at plain sites compared to Mt. Haruna were not a rare case. Because of the boundary layer being stable at night, the dust layer was advected eastward without the vertical mixing before sunrise. This study suggests that after thermal convection activated by sunlight during daytime Asian dust transported in the free troposphere may be brought down into the atmospheric boundary layer, increasing the dust concentration there.  相似文献   

5.
Airborne in-situ measurements were analyzed to investigate the effects of biomass burning and regional background aerosols on cloud condensation nuclei (CCN) activity in the Pacific Dust Experiment (PACDEX) during April and May 2007. Airmass trajectories with both horizontal and vertical motions were provided to identify the aerosol sources. In the biomass burning cases, the elevated aerosol layers were clearly observed at dry conditions because of the convection of airmass in the source region. The relative aging of aerosols was supported by the ratios of BC to particles with size ranging from 0.1 to 1.0 μm (N0.1–1.0) and BC to carbon monoxide. Compared to aerosols in the precedent plume of biomass burning, aged particles in the latter plume were more activated to CCN at 0.4% (CCN0.4%) than 0.1% supersaturation (CCN0.1%) due to aerosols chemical modification during the aging process. On the other hand, significant difference of CCN0.4% and CCN0.1% at regional background aerosols over the Pacific Ocean was due to the activated particles below 1 μm in diameter. Although higher concentrations of aged particles were observed over the eastern Pacific Ocean, activated aerosols to cloud droplet was comparatively similar in the western Pacific Ocean because of the similar concentrations of N0.1–1.0 in both cases.  相似文献   

6.
Mixing in the planetary boundary layer (PBL) affects vertical distributions of air tracers in the lower troposphere. An accurate representation of PBL mixing is critical for chemical-transport models (CTMs) for applications sensitive to simulations of the vertical profiles of tracers. The full mixing assumption in the widely used global CTM GEOS-Chem has recently been supplemented with a non-local PBL scheme. This study analyzes the impact of the non-local scheme on model representation of PBL mixing, consequences for simulations of vertical profiles of air tracers and surface air pollution, and implications for model applications to the interpretation of data retrieved from satellite remote sensing. The non-local scheme significantly improves simulations of the vertical distributions for NO2 and O3, as evaluated using aircraft measurements in summer 2004. It also reduces model biases over the U.S. by more than 10 ppb for surface ozone concentrations at night and by 2–5 ppb for peak ozone in the afternoon, as evaluated using ground observations. The application to inverse modeling of anthropogenic NOx emissions for East China using satellite retrievals of NO2 from OMI and GOME-2 suggests that the full mixing assumption results in 3–14% differences in top–down emission budgets as compared to the non-local scheme. The top–down estimate combining the non-local scheme and the Lin et al. inverse modeling approach suggests a magnitude of 6.6 TgN yr?1 for emissions of NOx over East China in July 2008 and 8.0 TgN yr?1 for January 2009, with the magnitude and seasonality in good agreement with bottom–up estimates.  相似文献   

7.
Scavenging by water droplets is a mechanism for aerosol removal near clouds. Numerical methods are developed to quantify the removal of charged radioactive aerosols, including the electrical image force's contribution, attractive at small separations. Charging of radioactive aerosols is found to have significant effects on their collision efficiency and scavenging coefficient. The effect depends on the aerosol charge, and therefore, on the radioactive aerosol's decay rate and number concentration, but it does not depend significantly on the charge carried by the water drops. Scavenging coefficients are calculated for radioactive aerosols. For small particles at low aerosol concentrations (Z∼10–100 cm−3), charging can increase the scavenging coefficients by up to an order of magnitude. Electrification will, therefore, encourage the removal of small radioactive aerosols from the atmosphere, more rapidly than equivalent non-radioactive aerosols. The increase in removal at low radioactive-aerosol concentration may account for underpredictions of surface concentrations and will contribute to spatial variations in aerosol removal.  相似文献   

8.
9.
We use the fractional aerosol optical depth (AOD) values derived from Multiangle Imaging Spectroradiometer (MISR) aerosol component measurements, along with aerosol transport model constraints, to estimate ground-level concentrations of fine particulate matter (PM2.5) mass and its major constituents in the continental United States. Regression models using fractional AODs predict PM2.5 mass and sulfate (SO4) concentrations in both the eastern and western United States, and nitrate (NO3) concentrations in the western United States reasonably well, compared with the available ground-level U.S. Environment Protection Agency (EPA) measurements. These models show substantially improved predictive power when compared with similar models using total-column AOD as a single predictor, especially in the western United States. The relative contributions of the MISR aerosol components in these regression models are used to estimate size distributions of EPA PM2.5 species. This method captures the overall shapes of the size distributions of PM2.5 mass and SO4 particles in the east and west, and NO3 particles in the west. However, the estimated PM2.5 and SO4 mode diameters are smaller than those previously reported by monitoring studies conducted at ground level. This is likely due to the satellite sampling bias caused by the inability to retrieve aerosols through cloud cover, and the impact of particle hygroscopicity on measured particle size distributions at ground level.  相似文献   

10.
Dichloromethane, perchloroethylene, and trichloroethylene are commercially important chlorinated solvents whose health and environmental impacts are under scrutiny in the industrial world. Their distributions in the global atmosphere have been computed based on data from the Reactive Chlorine Emissions Inventory (RCEI) project using the Global Balance Environment (GLOBE) model, a 3-D radiative-dynamical-chemical model. Their atmospheric lifetimes, scaled to an observed methyl chloroform lifetime of 4.8 years, are 158 days, 105 days, and 4.3 days, respectively. They have strong interhemispheric gradients, with maximum zonal mean surface concentrations in the winter mid-latitude northern hemisphere of approximately 40 ppt, 9 ppt, and 2.5 ppt, respectively. Their spatial distributions show significant seasonal variability, and are sensitive to vertical mixing by cumulus convection and horizontal mixing by synoptic-scale turbulence. While the model interhemispheric exchange time (1.0 years) and computed atmospheric lifetimes are very sensitive to sub-grid scale diffusion, interhemispheric gradients of the chlorinated solvents are not. The simulated results suggest a greater importance for oceanic emissions of perchloroethylene and trichloroethylene than has previously been assumed.  相似文献   

11.
Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997–2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57–95%) over all regions, but are responsible for a smaller fraction of AOD (26–76%). We define “background” aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36–97% for surface concentrations and 38–89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.  相似文献   

12.
13.
Most aerosol particles, such as sulphate and sea-salt particles, mainly scatter solar radiation, whilst soot (in the form of elemental carbon or “black” carbon, BC) in addition leads to considerable absorption. This scattering and absorption by the aerosol particles constitute the so-called direct aerosol effect. In this paper, we present results from a study of possible direct effects of tropospheric BC and sulphate aerosols, with an emphasis on BC aerosols, along a line from North Africa through Europe into the Arctic. Radiative budgets in a cloud-free atmosphere are estimated. Based on model-calculated distributions of BC and sulphate (provided by Seland and Iversen, 1998) and assumed size distributions of the background aerosol, new size distributions are obtained by adding natural, biomass burning and fossil fuel contributions to the background aerosol. Added nucleation mode particles are assumed externally mixed, whereas added accumulation mode BC and sulphate is internally mixed with the background according to condensational growth and Brownian coagulation theory. Humidity effects are taken into account by use of the Köhler equation. Mie calculations provide the resulting optical parameters, and the forcing is finally estimated by use of a radiative transfer model. A reference run and a series of eleven test-runs are performed to investigate the sensitivity of various assumptions on the contribution to upward TOA irradiance from BC and non-sea-salt sulphate. The tests suggest a high sensitivity to presence of BC and to particle swelling due to humidity. The sensitivity to assumed distribution of BC on particle size is more moderate. The same is true for the vertical resolution and the number concentration of the background aerosol. The effect of mixing organic carbon (OC) internally with biomass burning BC nucleation mode particles is characterized as moderate. The role of OC is, however, still uncertain. The same holds true for the optical thickness of the background atmosphere, for which we found a high sensitivity in this study. Other assumptions that were investigated had only small effects on the forcing. For the reference run we find a minimum in the aerosol forcing of approximately −5 W m-2 near the most polluted areas in Europe, and a maximum of approximately 2 W m-2 over North Africa. A warming effect is also found for the Arctic region, with forcing values up to 0.4 W m-2.  相似文献   

14.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

15.
This paper presents the results of the lidar experiments that have been performed during January 1989 through August 1990 to study the aerosol vertical distributions in the nocturnal atmosphere and their comparison with near-simultaneous aerological soundings for environmental monitoring. During the study period, the aerosol distributions showed significant stratified aerosol layer structures in the lower atmosphere throughout the south-west monsoon season (June-September), while these structures appear to be either erratic or absent during remaining months of the year. In addition, the aerosols present in the lowest air layers up to 200 m are found to contribute significantly (about 40%) to the aerosol loading in the nocturnal boundary layer at the lidar site. The pre-monsoon to winter ratio of mixing depth and ventilation coefficient were found to be 1.11 and 1.62, respectively. Thus the height of the mixed layer (around 350 m) and the associated ventilation coefficients suggest that early winter evenings tend to have higher pollution potential at the experimental site. The results indicate that the lidar technique has the potential to yield good information on the structure of the nocturnal atmosphere which is found to be influenced by the atmospheric stability conditions as revealed by aerological observations.  相似文献   

16.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

17.
We present calculations to estimate potential changes to the local climate and photochemistry caused by pollutants (gases and particles) produced in Mexico City, and the implications for the regional scale when pollutants are exported to surrounding regions. Measured aerosol optical properties are used in a 2-stream delta-Eddington radiative transfer model (Slingo and Schrecker, 1982. Quarterly Journal of the Royal Meteorological Society 108, 407–426) to estimate net radiative fluxes and heating rates, while photolysis rates for nitrogen dioxide and ozone are estimated from a much more detailed model (Madronich, 1987. Journal of Geophysical Research 92, 9740–9752). The presence of highly absorbing aerosols in Mexico City leads to a 17.6% reduction in solar radiative flux at the surface when an optical depth of 0.55 is considered. Photolysis rates for nitrogen dioxide and ozone are reduced between 18 and 21% at the surface, while an increase of between 15 and 17% is predicted above the boundary layer, for local noon calculations.The non-uniform vertical structure of aerosol concentrations observed (Pérez Vidal and Raga, 1998. Atmosfera 11, 95–108) plays a significant role in determining localized regions of heating, i.e. stabilization at the top of the boundary layer that results in a temperature increase of 0.4K h−1 at that level. The presence of a 200 m-deep aerosol layer at the top of the boundary layer results in vertical profiles of the photolysis rates that are significantly different from the case where the aerosols are uniformly distributed in the mixed layer. At the bottom of the aerosol layer (about 1 km above the surface), the rates are about 28% lower than when there is a uniform aerosol distribution in the boundary layer. Finally, there is also an enhancement of photolysis rates at the top of the boundary layer that may lead to increased ozone production compared to the non-aerosol case.  相似文献   

18.
The chemical composition and size distribution of submicron aerosols were analyzed at a suburban site at Saitama, Japan, in the winter of 2004/2005, using an Aerodyne aerosol mass spectrometer. Although organics and nitrate were the dominant species during the sampling period, a large fraction of sulfate was observed at the accumulation mode when mass loading was low and wind speed was high. The size distributions of m/z 44 (mostly CO2+) and sulfate aerosols during periods of high wind speed showed remarkable similarities in the accumulation mode, indicating that oxygenated organics were aged aerosols and internally mixed with sulfate. Ozone concentrations were also increased during these high wind speed periods although nighttime (e.g., 12/17 2004), indicating that the oxygenated compounds were strongly influenced by transported and aged air masses. The diurnal profiles of ultrafine-mode organics and hydrocarbon-like organic aerosols (HOA) were similar to NOX derived from traffic and other combustion sources. The temporal variation of oxygenated organic aerosols (OOA) agreed well with that of nitrate as a secondary aerosol tracer, and the diurnal profile of the OOA fraction of organics increased during the day associated with higher UV light intensity. The result of time and size-resolved chemical composition of submicron particles indicated that the OOA is associated with both photochemical activity and transboundary pollution, and ultrafine-mode organic and HOA aerosols are mainly associated with combustion sources.  相似文献   

19.
In this study, we will present evidence that aerosol particles have strong effects on the surface ozone concentration in a highly polluted city in China. The measured aerosol (PM10), UV flux, and O3 concentrations were analyzed from 1 November (1 Nov) to 7 November (7 Nov) 2005 in Tianjin, China. During this period, the aerosol concentration had a strong day-by-day variation, ranging from 0.2 to 0.6 mg m−3. The ozone concentration also shows a strong variability in correlation with the aerosol concentration. During 1 Nov, 2 Nov, 6 Nov, and 7 Nov, the ozone concentration was relatively high (about 30–35 ppbv; defined as a high-ozone period), and during 3 Nov to 5 Nov, the ozone concentration was relatively low (about 5–20 ppbv; defined as a low-ozone period). The analysis of the measurement shows that the ozone concentration is strongly correlated to the measured UV flux. Because there were near cloud-free conditions between 1 Nov and 7 Nov, the variation of the UV flux mainly resulted from the variation of aerosol concentration. The result shows that higher aerosol concentrations produce a lower UV flux and lower ozone concentrations. By contrast, the lower aerosol concentration leads to a higher UV flux and higher ozone concentrations. A chemical mechanism model (NCAR MM) is applied to interpret the measurement. The model result shows that the extremely high aerosol concentration in this polluted city has a very strong impact on photochemical activities and ozone formation. The correlation between aerosol and ozone concentrations appears in a non-linear feature. The O3 concentration is very sensitive to aerosol loading when aerosol loading is high, and this sensitivity is reduced when aerosol loading is low. For example, the ratio of Δ[O3]/Δ[AOD] is about −16 ppbv AOD−1 when AOD is less than 2, and is only −4 ppbv AOD−1 when AOD is between 2 and 5. This result implies that a future decrease in aerosol loading could lead to a rapid increase in the O3 concentration in this region.  相似文献   

20.
The properties of condensed polydisperse sulfuric acid aerosols in industrial flue gas were calculated. The condensed aqueous acid volume concentration, composition, droplet size distributions and condensed plume opacity were calculated for typical flue gas compositions, condensation nucleus size distributions and flue gas dilution ratios. The assumed initial flue gas at 170°C contained 0.035 g/acm fly ash particles, 1-20% water vapor, and 1-50 ppmv sulfuric acid vapor. The assumed gas cooling mechanism was by adiabatlc dilution with cool ambient air. Polydisperse droplet growth was calculated by assuming equal surface area increase for each particle. The calculations show that sulfuric acid condensation should have minimal effect on particles larger than 1 μm, but will form a high concentration of particles in the narrow size range of 0.05-0.5 μm diameter. Depending on the initial sulfuric acid and water vapor concentrations in the hot flue gas, the calculated maximum plume opacity following gas dilution ranged from 5% to 25%, compared to 4% for the dry condensation nucleus aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号