首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne in-situ measurements were analyzed to investigate the effects of biomass burning and regional background aerosols on cloud condensation nuclei (CCN) activity in the Pacific Dust Experiment (PACDEX) during April and May 2007. Airmass trajectories with both horizontal and vertical motions were provided to identify the aerosol sources. In the biomass burning cases, the elevated aerosol layers were clearly observed at dry conditions because of the convection of airmass in the source region. The relative aging of aerosols was supported by the ratios of BC to particles with size ranging from 0.1 to 1.0 μm (N0.1–1.0) and BC to carbon monoxide. Compared to aerosols in the precedent plume of biomass burning, aged particles in the latter plume were more activated to CCN at 0.4% (CCN0.4%) than 0.1% supersaturation (CCN0.1%) due to aerosols chemical modification during the aging process. On the other hand, significant difference of CCN0.4% and CCN0.1% at regional background aerosols over the Pacific Ocean was due to the activated particles below 1 μm in diameter. Although higher concentrations of aged particles were observed over the eastern Pacific Ocean, activated aerosols to cloud droplet was comparatively similar in the western Pacific Ocean because of the similar concentrations of N0.1–1.0 in both cases.  相似文献   

2.
Annual and seasonal variabilities in source contribution to total suspended particles (TSP) measured over an urban location in western India, Ahmedabad between May 2000 and January 2003 are examined in this study. Positive matrix factorization (PMF) resolved six factors including airborne regional dust, calcium carbonate rich dust, biomass burning/vehicular emissions, secondary nitrate/sulfate, marine aerosol, and smelter. In this study, non-parametric statistical tests including the Kruskal–Wallis analysis of variance (K–W ANOVA) and Spearman rank correlation (ρ) test were used to assess the annual and seasonal variations in factor contributions, and the influence of meteorology on these contributions, respectively. None of the factor contributions exhibited annual variations except airborne regional dust, and biomass burning/vehicular emissions factors. All of the factors exhibited seasonal variations. Several factor monsoon (July–September) median concentrations were significantly different from one or more of the other season medians. In general, it appeared that meteorological factors played a role in establishing the seasonal behavior of factor contributions. Factor contributions exhibited low to moderate correlations with meteorological parameters such as temperature, relative humidity, wind direction, and wind speed. Amongst all of the relationships, marine aerosol factor was reasonably well correlated with relative humidity (ρ = 0.73) and wind direction (ρ = 0.73) during the pre-monsoon season (March–May). This observation suggests that the aerosol transported by moisture laden winds from the Arabian sea contribute to this factor. The airborne regional dust factor was also moderately correlated with wind speed (ρ = 0.70) during the post-monsoon season. This relationship indicates that high regional dust concentrations are favored by high wind speeds and the resultant increase in dispersion.  相似文献   

3.
Submicron particles were collected from June to September 2008 in La Jolla, California to investigate the composition and sources of atmospheric aerosol in an anthropogenically-influenced coastal site. Factor analysis of aerosol mass spectrometry (AMS) and Fourier transform infrared (FTIR) spectroscopy measurements revealed that the two largest sources of submicron organic mass (OM) at the sampling site were (1) fossil fuel combustion associated with ship and diesel truck emissions near the ports of Los Angeles and Long Beach and (2) aged smoke from large wildfires burning in central and northern California. During non-fire periods, fossil fuel combustion contributed up to 95% of FTIR OM, correlated to sulfur, and consisted mostly of alkane (86%) and carboxylic acid groups (9%). During fire periods, biomass burning contributed up to 74% of FTIR OM, consisted mostly of alkane (48%), ketone (25%), and carboxylic acid groups (17%), and correlated to AMS-derived factors resembling brush fire smoke, wood smoldering and flaming particles, and biogenic secondary organic aerosol. The two AMS-derived biomass burning factors were identified as oxygenated and hydrocarbon biomass burning aerosol on the basis of spectral similarities to smoldering and flaming smoke particles, respectively. In addition, the ratio of oxygenated to hydrocarbon biomass burning OM shows a clear diurnal trend with an afternoon peak, consistent with photochemical oxidation. Back trajectory analysis indicates that 2–4-day old forest fire emissions include substantial ketone groups, which have both lower O/C and lower m/z 44/OM fraction than carboxylic acid groups. Air masses with more than 4-day old emissions have higher carboxylic acid/ketone group ratios, showing that atmospheric processing of these ketone-containing organic aerosol particles results in increased m/z 44 and O/C. These observations may provide functionally-specific evidence for the type of chemical processing that is responsible for biomass burning particle composition in the atmosphere.  相似文献   

4.
Biomass burning smoke constituents are worthy of concern due to its influence on climate and human health. The organic constituents and distributions of molecular tracers emitted from burning smoke of six natural vegetations including monsoon evergreen broad-leaf trees and shrubs in South China were determined in this study. The gas and particle samples were collected and analyzed by gas chromatography–mass spectrometry. The major organic components in these smoke samples are methoxyphenols from lignin and saccharides from cellulose. Polycyclic aromatic hydrocarbons (PAHs) are also present as minor constituents. Furanose, pyranose and their dianhydrides are the first reported in the biomass burning smoke. Some unique biomarkers were detected in this study which may be useful as specific tracers. The corresponding tracer/OC ratios are used as indicators for the two types of biomass burning. U/R (1.06–1.72) in the smoke samples may be used as parameters to distinguish broad-leaf trees and shrubs from fossil fuel. Other useful diagnostic ratios such as methylphenanthrene to phenanthrene (MPhe/Phe), phenanthrene to phenanthrene plus anthracene (Phe/(Phe + Ant)) and fluoranthene to fluoranthene plus pyrene (Flu/(Flu + Pyr)) and octadecenoic acid/OC are also identified in this study. These results are useful in efforts to better understand the emission characterization of biomass burning in South China and the contribution of regional biomass burning to global climate change.  相似文献   

5.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

6.
PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N?=?90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional biomass burning has a substantial influence on the urban air quality.  相似文献   

7.
Intensive measurements of aerosol (PM10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43–473 ng m?3) and non-sea-salt potassium (0.83–3.2 μg m?3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.  相似文献   

8.
Every year, during the pre-monsoon period (March–May), a pronounced increase in aerosol optical depth (AOD) is observed over the eastern Arabian Sea, which is attributed to the transport of continental aerosols. This paper presents the altitude distribution of tropospheric aerosols, characteristics of elevated aerosol layers and aerosol radiative heating of the atmosphere during the pre-monsoon season over Trivandrum (8.5°N, 77°E), a station located at the southwest coast of Indian peninsula which is covered by the eastern Arabian Sea plume. Altitude profiles of aerosol backscatter coefficient (βa) and linear depolarization ratio (LDR) reveal two distinct aerosol layers persisting between 0–2 km and 2–4 km. The layer at 2–4 km, which contributes about 25% of the AOD during polluted conditions, contains significant amount of non-spherical aerosols. This layer is prominent only when the advection of dry airmass occurs from the northern parts of the Indian subcontinent and northern Arabian Sea. Role of long-range transport in the development of this aerosol layer is further confirmed using latitude–altitude cross-section of βa observed by CALIPSO. Aerosol content in the layer below 2 km is large when advection of air occurs from the north and east Arabian Sea and is significantly small when it occurs from the southwest Arabian Sea or Indian Ocean. During the highly polluted conditions, aerosols tend to increase the diurnal mean atmospheric radiative heating rate by ~0.8 K day?1 at 500 m and 0.3 K day?1 at 3 km, which are about 80% and 30% of the respective radiative heating in the aerosol-free atmosphere.  相似文献   

9.
The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from off-line calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99%. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 and 4 μm. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest single scattering albedo. A similar treatment was done for aerosols from biomass burning. In this case, two size distributions were considered. One was based on a distribution measured for Northern Hemisphere temperate forest fires while the second was based on a measured size distribution for tropical fires. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and band averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction. These optical properties result in global average forcing from anthropogenic sulfate aerosols of −0.81 Wm-2. The global average forcing for biomass aerosols ranged from −0.23 to −0.25 Wm-2 depending on the assumed size distribution, while fossil fuel organic and black carbon are estimated to heat the atmosphere by about 0.16 Wm-2.  相似文献   

10.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

11.
Agricultural waste burning is a widespread practice throughout the world but there is little information about its pollutant impact. This paper deals with a preliminary study of the pollution observed in Vitoria (Northern Spain) caused by cereal waste burning. The mean hourly flux of pollutants produced by cereal waste burning fires can reach values of 1.4 kt of CO2, 13 t of TPM and 3 t of NOx in the area around Vitoria. Measurements obtained in the area of emission and inside fire plumes show high ratios (NO2/NOx) indicating that nitrogen oxides emitted by the source undergo a rapid transformation in the same area of emission. Results relating to aerosol composition collected in Vitoria during burning periods show an increase in the concentration of K+, NO3 and Cl ions, that are inter-correlated. The modification of the ionic composition of aerosols also affects the chemistry of the rain collected in Vitoria. During the burning period, it is particularly noticeable that anthropogenic pollution (usually identifiable by the correlation between SO42− and NO3 concentrations) disappears, indicating the existence of an independent source of NO3 not linked to the SO42− source. Similar results were deduced studying BAPMON data collected in Spain during cereal waste burning. Finally, we note that ozone concentration measured at Vitoria is not affected by the pollution generated by the burning fires.  相似文献   

12.
Most aerosol particles, such as sulphate and sea-salt particles, mainly scatter solar radiation, whilst soot (in the form of elemental carbon or “black” carbon, BC) in addition leads to considerable absorption. This scattering and absorption by the aerosol particles constitute the so-called direct aerosol effect. In this paper, we present results from a study of possible direct effects of tropospheric BC and sulphate aerosols, with an emphasis on BC aerosols, along a line from North Africa through Europe into the Arctic. Radiative budgets in a cloud-free atmosphere are estimated. Based on model-calculated distributions of BC and sulphate (provided by Seland and Iversen, 1998) and assumed size distributions of the background aerosol, new size distributions are obtained by adding natural, biomass burning and fossil fuel contributions to the background aerosol. Added nucleation mode particles are assumed externally mixed, whereas added accumulation mode BC and sulphate is internally mixed with the background according to condensational growth and Brownian coagulation theory. Humidity effects are taken into account by use of the Köhler equation. Mie calculations provide the resulting optical parameters, and the forcing is finally estimated by use of a radiative transfer model. A reference run and a series of eleven test-runs are performed to investigate the sensitivity of various assumptions on the contribution to upward TOA irradiance from BC and non-sea-salt sulphate. The tests suggest a high sensitivity to presence of BC and to particle swelling due to humidity. The sensitivity to assumed distribution of BC on particle size is more moderate. The same is true for the vertical resolution and the number concentration of the background aerosol. The effect of mixing organic carbon (OC) internally with biomass burning BC nucleation mode particles is characterized as moderate. The role of OC is, however, still uncertain. The same holds true for the optical thickness of the background atmosphere, for which we found a high sensitivity in this study. Other assumptions that were investigated had only small effects on the forcing. For the reference run we find a minimum in the aerosol forcing of approximately −5 W m-2 near the most polluted areas in Europe, and a maximum of approximately 2 W m-2 over North Africa. A warming effect is also found for the Arctic region, with forcing values up to 0.4 W m-2.  相似文献   

13.
Open crop stubble burning events were observed in and around Patiala city, India. A ground level study was deliberated to analyze the contribution of wheat (Triticum aestivum) and rice (Oriza sativa) crop stubble burning practices on concentration levels of aerosol, SO2 and NO2 in ambient air at five different sites in and around Patiala city covering agricultural, commercial and residential areas. Aerosols were collected on GMF/A and QMF/A (Whatman) sheets for a 24 h period throughout the year in 2007. Simultaneously, sampling of SO2 and NO2 was conducted and results obtained during stubble burning periods were compared to the non-stubble burning periods. Results clearly pointed out a distinct increase in aerosol, SO2 and NO2 levels during the crop stubble burning periods.  相似文献   

14.
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM10 and PM2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.  相似文献   

15.
We have estimated the mixing height (MH) and investigated the relationship between vertical mixing and ground-level ozone concentrations in Seoul, Korea, by using three ground-based active remote sensing instruments operating side by side: micro-pulse lidar (MPL), differential absorption lidar (DIAL), and differential optical absorption spectroscopy (DOAS). The MH is estimated from MPL measurements of aerosol extinction profiles by the gradient method under convective conditions. Comparisons of the MHs estimated from MPL and radiosonde measurements show a good agreement (r2=0.99). Continuous MPL measurements with high temporal and vertical resolution reveal the diurnal variations of the MH under convective conditions and the presence of a residual layer during the nighttime. Comprehensive measurements of ozone and aerosol by MPL, DIAL and DOAS during an high ozone episode (24–26 May 2000) in Seoul, Korea, reveal that (1) photochemical ozone production and advection from upwind regions (the western part of Seoul) contribute two peaks of ozone concentrations at the ground around 14:00 and 18:00 local time on 25 May 2000, respectively, and (2) the entrainment and the fumigation processes of ozone aloft in the nighttime residual layer into the ground is a major contributor of high concentrations of ground-level ozone observed on the following day (26 May 2000).  相似文献   

16.
Abstract

A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated instruments to produce multiple pollutant characterizations across a range of representative urban and rural locations in a new network referred to as the National Core Monitoring Network (NCore). The NCore parameters include carbon monoxide (CO), sulfur dioxide (SO2), reactive nitrogen (NOy), ozone (O3), and ammonia (NH3) gases and the major fine particulate matter (PM2.5) aerosol components (ions, elemental and organic carbon fractions, and trace metals). The addition of trace gas instruments, deployed at existing chemical speciation sites and designed to capture concentrations well below levels of national air quality standards, is intended to support both long-term epidemiological studies and regional-scale air quality model evaluation. In addition to designing the multiple pollutant NCore network, steps were taken to assess the current networks on the basis of spatial coverage and redundancy criteria, and mechanisms were developed to facilitate incorporation of continuously operating particulate matter instruments.  相似文献   

17.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples (n = 58) collected every sixth day in Xi’an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-β-d-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m?3, with an average of 428 ± 399 ng m?3. Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water-soluble K+, Cl?, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of 2.3% was found in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1–43.8% of OC (with an average of 17.6 ± 8.4%).

Implications:?PM2.5 levoglucosan concentrations and the correlation between levoglucosan relative to other compounds during four seasons in Xi’an showed that the influence of biomass burning is maximum during the residential heating season (winter), although some important influences may be detected in spring (field preparation burnings) and autumn (corn stalks and wheat straw burning, fallen dead leaves burning) at Xi’an and surrounding areas. Household heating with biomass during winter was quite widespread in Guanzhong Plain. Therefore, the control of biomass/biofuel combustion could be an effective method to reduce pollutant emission on a regional scale.  相似文献   

18.
Ozone peaks with mixing ratios as high as 138 ppbv were observed in the lower troposphere (2.5–4.5 km) over Hong Kong in spring. Simultaneously observed high humidity suggests that this enhanced ozone was not the result of transport from the upper troposphere. Back trajectory analysis suggests that these enhancements resulted from lateral transport. Air masses arriving at the altitude of the ozone peaks appear to have passed over continental Southeast Asia where the bulk of biomass burning occurs at this time of the year (February–April). We hypothesize that biomass burning in this region provided the necessary precursors for the observed ozone enhancement. As far as we know this is the first observation of highly enhanced ozone layers associated with biomass burning in continental Southeast Asia.  相似文献   

19.
The presence of cesium-137 (137Cs) in the environment is mainly due to past nuclear tests and accidental reactor releases. Due to the half-life of 137Cs (30.2 y), amounts of this radionuclide releases are in fact still detectable in soils, and at trace levels in the vegetation and the atmosphere. Since the middle of the 1990’s, the presence of 137Cs in the atmosphere has long been attributed to the resuspension of terrestrial dust. Recently, modelling studies have demonstrated that an additional and possibly dominant source of this anthropogenic radionuclide is biomass burning. Here, we report the variations of atmospheric 137Cs activity levels over a 2-year period at the puy de Dôme (1465 m a.s.l.), France in combination with measurements of the aerosol chemical composition, in particular with indicators for biomass burning (levoglucosan and potassium) and soil dust (calcium). Temporal co-variations of these chemical compounds in addition to back-trajectories are used to identify common source emissions. Significant correlation is found between these compounds. Hence, we experimentally confirm the modelling study highlighting the fact that the atmospheric 137Cs is partly released by biomass burning. In addition, we observed that the correlations between the 137Cs concentrations and levoglucosan and biomass burning K+ differ according to the season. This is in agreement with the temporal evolution of levoglucosan concentration, which has maxima in winter and minima in summer.  相似文献   

20.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号