共查询到20条相似文献,搜索用时 56 毫秒
1.
耐镉细菌联合电动技术修复镉污染土壤的研究 总被引:1,自引:0,他引:1
为提高传统电动技术对重金属污染土壤的修复效果以及经济效益,本研究采用耐镉细菌联合电动修复技术修复镉污染土壤.通过在含镉土壤中接种3种耐镉细菌Escherichia coli strain、Bacillus sp.和Bacillus cereus strain,以电压梯度1 V·cm-1通电10 d,比较不同耐镉细菌对土壤Cd去除和形态转化,以及电能消耗的影响.结果表明,接种Escherichia coli strain、Bacillus sp.、Bacillus cereus strain的试验组比传统电动修复的Cd去除率分别提高7.63%、17.21%、19.53%;单位修复能耗分别降低64.78、109.52、116.54 kW·min·mg-1.由于Bacillus cereus strain对Cd2+的吸附量高于Escherichia coli strain和Bacillus sp.,且能有效降低土壤中Cd的生物毒性,因此采用Bacillus cereus strain联合电动技术修复镉污染土壤时效果最佳,Cd去除率达到30.77%,单位修复耗能为48.94 kW·min·mg-1. 相似文献
2.
3.
4.
电压对电动修复Cr(Ⅵ)污染高岭土的影响研究 总被引:2,自引:0,他引:2
试验选用重铬酸钾作为污染物,配制高岭土中Cr(Ⅵ)初始质量分数为500mg·kg-1.试验研究了不同电压下的电动修复效率和单位能耗,并结合经济效益找出合适的电压范围.试验结果表明:当电压为20V时,去除效率达到89.9%,单位能耗仅为93.04KW·h·g-1.当电压再增大的时候,去除效率提高较小,单位能耗增大迅速,不符合经济效益的要求.由于适宜的施加电压和土壤本身性质有很大联系,如何通过简单的方法确定适宜的施加电压,还需进一步研究. 相似文献
5.
6.
用电动修复方法对硝酸盐污染高岭土进行修复试验研究,试验所用硝酸盐污染高岭土中氮的初始浓度为1 000 mg/kg;研究了pH、修复时间、修复电压对硝酸盐氮去除率的影响。结果表明,硝酸盐氮的去除率随修复时间延长和修复电压增大而升高;延长修复时间电能消耗呈增加趋势,增大修复电压电能消耗也会增加;综合考虑去除率和能耗2种因素,对于试验所研究的硝酸盐污染高岭土最佳修复时间是4 d,最佳修复电压为0.7~1.0 V/cm。当修复电压为1.0 V/cm,修复时间为4 d时,土壤硝酸盐氮的去除率为87.67%,电能消耗为335.2 kW·h/g。 相似文献
7.
8.
用电动修复方法对硝酸盐污染高岭土进行修复试验研究,试验所用硝酸盐污染高岭土中氮的初始浓度为1 000 mgkg,研究了pH、修复时间、修复电压对硝酸盐氮去除率的影响。结果表明,硝酸盐氮的去除率随修复时间延长和修复电压增大而升高;延长修复时间电能消耗呈增加趋势,增大修复电压电能消耗也会增加;综合考虑去除率和能耗2种因素,对于试验所研究的硝酸盐污染高岭土最佳修复时间是4 d,最佳修复电压为0.7~1.0 Vcm。当修复电压为1.0 Vcm,修复时间为4 d时,土壤硝酸盐氮的去除率为87.67%,电能消耗为335.2 kW·hg。 相似文献
9.
利用分离得到的对镉具有吸附功能的两株真菌菌株对镉污染土壤样品进行微生物修复治理,并通过酸性淋溶实验模拟自然界酸雨来评价治理效果是否稳定。考察不同p H值的酸性淋溶实验对微生物修复后土壤的p H和镉含量是否产生影响。结果发现,在近80 d的三种不同p H值的淋溶液的酸性淋溶实验中,经过微生物修复处理后的土壤样品,p H值和镉有效态含量都比较稳定,而空白对照组则出现了大量波动和瞬时峰值的现象。 相似文献
10.
为了增强传统电动法修复土壤中重金属的效果,研究加入乙酸、柠檬酸、EDTA作为增强剂的电迁移效果。结果表明:乙酸和柠檬酸有效抑制了阴极液体的碱化,使得整个土壤区维持在酸性范围之内;而EDTA对Cd的螯合作用使土壤中的Cd形成带负电的螯合物,增强了其移动性。采用柠檬酸作为电解液的整体迁移效果优于乙酸,并且在整个土壤区域没有呈现出Cd的积累现象。当采用乙酸作为电解液时Cd在靠近阴极区的土壤中发生积累现象,积累区Cd含量增加了67%。采用EDTA作为电解液时Cd的螯合物从阴极向阳极迁移,并在靠阳极的第二个土壤区域发生积累现象,在其他三个土壤区域也都有明显的迁移效果。相对于传统的电动法,增强剂施用后明显提高了Cd在土壤中的迁移效果。 相似文献
11.
为了解决常规电动修复方法对土壤重金属-有机物复合污染去除效率低的问题,采用向电解液中添加表面活性剂以及控制阴极电解液为酸性的电动强化修复技术,以Cr和菲为代表性污染物,研究电压和表面活性剂〔TritonX-100(曲拉通100)、SDBS(十二烷基苯磺酸钠)〕以及阴极电解液pH对修复效果的影响. 结果表明:Cr(Ⅵ)以阴离子团形式呈现向阳极迁移的趋势,菲呈现向阴极迁移的趋势;随着施加电压的升高,污染物去除率也会相应提高,当电压梯度升至1.0 V/cm时,Cr(T)、Cr(Ⅵ)、菲的去除率分别达到34.3%、76.9%、12.7%. 在电压梯度为1 V/cm的条件下,控制阴极电解液pH为4.00时,Cr(T)、Cr(Ⅵ)、菲的去除率分别升至45.1%、84.8%、23.1%;向电解液中添加表面活性剂后能提高污染物的去除率,其中,添加SDBS能够将Cr-菲复合污染土壤中Cr(T)、Cr(Ⅵ)的去除率由34.3%、76.9%升至39.9%、82.0%,添加TritonX-100能够将有机物菲的去除率由12.7%升至27.0%. 研究显示,修复处理后污染物浓度均有不同程度的降低,充分表明电动处理时提高修复电压、添加表面活性剂以及控制阴极电解液的酸碱性可以明显促进污染物在土壤中的迁移. 相似文献
12.
电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤 总被引:4,自引:3,他引:4
考察了电动力学方法对模拟铬(Ⅵ)污染土壤以及天津市原同生化工厂遗留下的铬渣山周边土壤的修复效果,并将该技术与铁可渗透反应格栅(permeable reactive barrier,PRB)技术联用,找出了较好的联用方式,与单一电动修复进行了对比.研究表明,电动力学技术能有效地修复被铬(Ⅵ)污染的土壤,模拟污染土壤铬(Ⅵ)的去除率达98%~100%,总铬去除率在阳极室附近为80%左右,而阴极室附近则为90%以上,恢复到土壤背景值;铬(Ⅵ)去除的同时伴随着铬(Ⅵ)向铬(Ⅲ)的转化,修复结束时土壤中残留的铬90%以上为铬(Ⅲ);污染极其严重的铬渣山下土,由于含约28%的铬(Ⅲ),修复结束时铬(Ⅵ)的去除率达98%以上,而总铬去除率仅为75%~77%;阳极室附近土壤pH降低而阴极室附近土壤pH升高,处于两极中间位置的pH变化不大.电动力学与铁PRB原位联用方式能充分地利用这2种技术的优点,修复后,土壤任意位置的总铬去除率接近90%,阳极室附近尤为好于单一电动修复,对土壤pH的影响也较小. 相似文献
13.
通过实验方法研究了土壤重金属锌污染的电动修复技术,分析了土壤重金属污染物的迁移和变化特征。实验结果表明在电场作用下土壤中重金属的浓度分布发生明显变化,使得大部分重金属能在电极附近富集而被去除,且土壤的pH值等是影响电动力学修复效果的主要因素。污染物Zn在电场作用下主要是在阴极附近产生富集,迁移方向由阳极向阴极,当实验电压为0.5V/cm时,在阳极附近土壤中锌的去除效率达到74.3%。电动修复中由于两极的氧化还原反应造成电极附近pH值产生明显变化,阳极附近的pH值由开始时的6.7逐渐变小到4.8,而阴极附近则相反,由开始时的6.8逐渐增大到9.2,表明土壤的酸性碱性条件变化明显。此外电动修复过程中电极附近的温度会发生相应的变化。 相似文献
14.
电动修复铬污染土壤的实验研究 总被引:13,自引:3,他引:13
对电动修复铬污染土壤进行了实验室研究。选用重铬酸钾作为污染物,其最初浓度为100mg/kg,实验过程中施加1DCV/cm的恒定电压,运行48h。结果表明电动修复可以去除土壤中存在的铬,去除效率可达81%。 相似文献
15.
16.
为解决常规电动修复方法对Cr污染土壤Cr(T)(总Cr)去除效率低的问题,提出了酸化预处理-电动强化修复技术. 以国内某化工厂铬渣堆放场地Cr污染土壤为研究对象,通过改变土壤酸化条件,分析乙酸和柠檬酸的酸化时间、酸浓度(以c计)对电动修复Cr污染土壤中Cr去除率的影响,并对土壤中Cr的形态进行分析. 结果表明:①酸化预处理-电动强化修复技术可以显著提高Cr污染土壤中Cr的去除率,其中0.9 mol/L柠檬酸酸化5 d组Cr(T)和Cr(Ⅵ)的去除率由对照组的6.23%、19.01%分别升至26.97%、77.66%. ②土壤酸化可以将部分Cr由碳酸盐结合态向水溶态转化,进而提高Cr去除率;在适宜的酸浓度范围内,酸浓度越高,土壤释放的Cr越多,Cr去除效果就越好. ③与乙酸组相比,柠檬酸组Cr的去除率较高,因为柠檬酸本身也是一种络合剂,在酸化作用释放碳酸盐结合态Cr的基础上,柠檬酸能与Cr发生络合作用,进一步提升了Cr的去除率. 电动修复过程中迁移出土壤的Cr主要以醋酸可提取态、可还原提取态和可氧化提取态为主,残留Cr的生物可利用性降低. 相似文献
17.
18.
19.
20.
土壤调理剂对镉污染稻田修复效果 总被引:8,自引:5,他引:8
选用森美思、CCT01、矿物质和特贝钙这4种土壤调理剂,在萍乡地区受镉(Cd)污染稻田开展大田控镉试验,探讨4种调理剂对土壤pH、容重、有机质、速效养分、质地和微团聚体等理化性质及土壤有效态Cd和糙米Cd含量的影响.研究结果表明与对照相比,添加土壤调理剂提高了土壤pH值、容重和阳离子交换量;其中森美思和CCT01土壤调理剂使土壤粉粒和黏粒增加,砂粒减少,而矿物质和特贝钙土壤调理剂使粉粒和黏粒减少,砂粒增加;除CCT01土壤调理剂外,施用土壤调理剂增加了大粒级团聚体,而减少小粒级微团聚体.土壤调理剂对土壤理化性质的影响促进污染土壤中的Cd由活性高的形态向活性低的形态转化,从而降低了土壤有效态Cd含量(5. 21%~34. 78%)和糙米中Cd含量(51. 39%~68. 06%).相关性分析表明,糙米Cd含量与土壤有效态Cd和有效磷呈显著的正相关关系,而与土壤pH和容重呈显著的负相关关系.从土壤和糙米降镉率及对理化性质的影响考虑,特贝钙土壤调理剂修复效果最佳,其次是森美思和矿物质土壤调理剂. 相似文献