首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The North Fork of Clear Creek (NFCC), Colorado, is an acid‐mine‐drainage‐impacted stream typical of many mountain surface waters affected by historic metal mining in the western United States. The stream is devoid of fish primarily because of high metal concentrations in the water (e.g., copper and zinc) and has large amounts of settled iron oxyhydroxide solids that coat the streambed. The NFCC is part of the Central City/Clear Creek Superfund site, and remediation plans are being implemented that include treatment of three of the main point‐source inputs and cleanup of some tailings and waste rock piles. This article examines dissolved (0.45‐μm filterable) concentrations of cadmium, copper, and zinc following several potential remediation scenarios, simulated using a reactive transport model (WASP4/META4). Results from modeling indicate that for cadmium, remediation of the primary point‐source adit discharges should be sufficient to achieve acute and chronic water‐quality standards under both high‐ and low‐flow conditions. To achieve standards for copper and zinc, however, the modeling scenarios suggest that it may be necessary to treat or remove contaminated streambed sediments in downstream reaches, as well as identify and treat nonpoint sources of metals. Recommendations for improvements to the model for metal transport in acid‐mine drainage impacted streams are made. These recommendations are being implemented by the U.S. Environmental Protection Agency. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
In a total of 189 water samples collected from Danish streams no traces of the pyrethroid esfenvalerate were detected. However, pyrethroids have previously been found in sediments in 9 out of 30 streams investigated. We found that the shredding activity of the Trichopteran Sericostoma personatum and the amphipod Gammarus pulex was significantly reduced with increased concentration of the pyrethroid lambda-cyhalohtrin adsorbed to the leaves on which they fed. Predation rate on the Plecopteran Leuctra nigra by the leech Erpobdella octoculata increased significantly with increasing concentration of lambda-cyhalothrin on the leaves on which L. nigra was fed. Our results clearly indicate that the ongoing monitoring of pesticides is likely to underestimate pyrethroid occurrence and that sediment-bound pyrethroids have a potential negative impact on ecosystem function and biotic interactions in streams.  相似文献   

3.
This study presents a detailed characterization of Shredder residues (SR) generated and deposited in Denmark from 1990 to 2010. It represents approximately 85% of total Danish SR. A comprehensive sampling, size fractionation and chemical analysis was carried out on entire samples as well as on each individual size fraction. All significant elemental contents except oxygen were analyzed. The unexplained “balance” was subsequently explained by oxygen content in metal oxides, carbonates, sulphates and in organics, mainly cellulose. Using mass and calorific balance approaches, it was possible to balance the composition and, thereby, estimate the degree of oxidation of elements including metals. This revealed that larger fractions (>10 mm, 10–4 mm, 4–1 mm) contain significant amount of valuable free metals for recovery. The fractionation revealed that the >10 mm coarse fraction was the largest amount of SR being 35–40% (w/w) with a metal content constituting about 4–9% of the total SR by weight and the <1 mm fine fraction constituted 27–37% (w/w) of the total weight. The lower heat value (LHV) of SR samples over different time periods (1990–2010) was between 7 and 17 MJ/kg, declining with decreasing particle size. The SR composition is greatly dependent on the applied shredding and post shredding processes at the shredding plants causing some variations. There are uncertainties related to sampling and preparation of samples for analyses due to its heterogeneous nature and uncertainties in the chemical analyses results (≈15–25%). This exhaustive characterization is believed to constitute hitherto the best data platform for assessing potential value and feasibility of further resource recovery from SR.  相似文献   

4.
Algae have considerable capability for absorbing heavy metals from wastewaters and are considered an effective treatment technology. Heavy metal absorption from coal mine water from the Bhowra Abandoned mine (open cast mine) and the Sudamdih Shaft mine (underground mine waters), both located in Dhanbad, India, by cells of Spirogyra was studied at different dilutions (100 percent, 80 percent, 60 percent, 40 percent, and 20 percent). In the present study, the following 18 metals were selected for analysis: aluminium (Al), arsenic (As), silver (Ag), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), manganese (Mn), nickel (Ni), and vanadium (V). Accordingly, Al and K were found to be higher in concentration with respect to selected metals for both mine waters. The biosorption study revealed that higher amounts of Al, Bi, Co, Cs, Fe, Ga, Mn, Ni, and V were absorbed by algal biomass at 100 percent concentration from both mine waters. The maximum uptake of Cu, As, and Cd was measured at 60 percent, 40 percent, and 20 percent, respectively, for the Bhowra Abandoned mine water. The biosorption equilibrium study revealed that Ag, Al, Ba, Be, Bi, Co, Cr, Cs, Fe, Ga, In, K, Mn, Ni, and V were maximally absorbed by algal biomass at 100 percent concentration from Bhowra mine water, while the maximum uptake by the algal biomass measured for the Sudamidh coal mine water was for Al, As, Bi, Cu, Fe, and Mn at 100 percent concentration. The different physicochemical characteristics of mine water and drinking water standards was also studied. Accordingly, total dissolved solid and chemical oxygen demand concentrations exceeded the drinking water standards for water samples collected from both mines.  相似文献   

5.
The ability of low-cost activated carbon prepared from Ceiba pentandra hulls, an agricultural waste material, for the removal of lead and zinc from aqueous solutions has been investigated. In the batch tests experimental parameters were studied, including solution pH, contact time, adsorbent dose and initial metal ions concentration. The adsorbent exhibited good sorption potential at pH 6.0. Maximum removal of lead (99.5%) and of zinc (99.1%) with 10 g/l of sorbent was observed at 50 mg/L sorbate concentration. Removals of about 60-70% occurred in 10 min, and equilibrium was attained at around 50 min for both metals. The functional groups (CO, SO,-OH) present on the carbon surface were responsible for the adsorption of metal ions. The adsorption parameters were analysed using both the Freundlich and Langmuir models. The data are better fitted by the Freundlich isotherm as compared to Langmuir model, and the adsorption capacities for lead and zinc were 25.5 and 24.1 mg/g, respectively. Kinetics of adsorption obeyed a second order rate equation and the rate constant was found to be 2.71 x 10(-2) and 2.08 x 10(-2) g/mg/min for lead and zinc, respectively. The desorption studies were carried out using dilute HCl, and the effect of HCl concentration on desorption was studied. Maximum desorptions of 85% for lead and 78% for zinc were attained with 0.15 M HCl.  相似文献   

6.
A 3-D biological model was developed and coupled to a hydrodynamic model, i.e., Princeton Ocean Model, to simulate the seasonal variation and budget of dissolved inorganic nitrogen, phosphate, and silicate in Jiaozhou Bay. The modeled nutrients distribution pattern is consistent with observation. Silicate, the most important limiting element for phytoplankton growth, is characterized by consumption in spring, increase in summer and autumn, and accumulation in winter, whereas dissolved inorganic nitrogen and phosphorous have increasing trend with low rates in spring, due to excessive river loads. Phytoplankton plays an important role in nutrient renewal by photosynthesis and respiration processes. During an annual cycle, 7.83 × 103 t N, 0.28 × 103 t P, and 3.93 × 103 t Si are transported to the bay’s outer sea, i.e., the Yellow Sea, suggesting that Jiaozhou Bay is a significant source of nutrients for the Yellow Sea. The spatial distribution of nutrients is characterized by vertically homogeneous profiles, with high concentration inside the bay and low concentration toward the bay channel. These features are mainly governed by strong turbulent mixing, fluvial influx, water exchange rate, and Yellow Sea water intrusion. Numerical experiments suggest that the government should pay enough attention to proper layout of sewage drainage.  相似文献   

7.
The impact on an ecosystem of an environmental stress, such as climate change or air pollution, can be studied through experimentation, through comparisons of sites across a gradient of the stress, through long-term studies at a single site, or through theoretical or modelling approaches. Although the former three techniques often are used to develop and test models, it is much rarer to explicitly link experimental, comparative or long-term studies together. Here we present a concept for combining experimental and comparative research to assess the direction and rate of change, the expected long-term state, and the rate at which the long-term state is achieved after an ecosystem is exposed to an environmental stress. We do this by comparing the response of a forest in Denmark to experimentally increased N deposition with the expected long-term response based on a European database of forests exposed to different levels of N deposition over long time periods. The analysis suggests that if N deposition were to increase by 3-fold to about 50 kg N ha-1 a-1 at the Danish site, and remain at this level, the N concentration in needles would respond within 2–4 yr after the onset of the enhanced N deposition, and would rapidly plateau to an expected mean value of 18.0 mg N g-1 dry mass (95% confidence interval ± 2.5 mg g-1). The N concentration of new litter also would respond rapidly (1–2 yr) to reach an expected value of 16.6 mg N kg-1 dry mass (± 3). The N concentration of the organic layer in the soil would increase much more slowly, but a significant increase would be expected within 5–10 yr. Mineral soil pH would take more than 7 yr to change. Finally, the flux of dissolved inorganic N in leachate wouldbegin to increase immediately, but would take many years to reach the expected level of 22.4 kg N ha-1 a-1(± 4).  相似文献   

8.
An end-of-life vehicle (ELV) is dismantled to recover and recycle any re-usable parts, then shipped to the shredding facility for further recovery of iron with any remaining Automobile Shredder Residue (ASR) to be considered as wastes and to be disposed of by either thermal treatment or landfill. Overall ELVs management status in Korea, including recycling resulting from the dismantling processes, was surveyed using some questionnaires given to dismantlers and other available information to provide some feasible means for future treatment. The averaged recycle rate in the dismantling stage showed a value of 44% and the rest of an ELV was then compressed and transported to shredding companies to recover mainly the iron content which averaged 38.7% of the mass of a new vehicle. The non-ferrous metals such as copper, antimony, zinc and aluminum accounted for only 1.5%. The Shredder dusts (SDs) were found to be composed of light and heavy fluffs and soil/dust and amounted to 15.8% based on the mass of a new vehicle. Dumping of fluff and inorganic residues into a landfill site, however, will be restricted when new regulations are implemented to reduce the disposal amount to less than 5% of a new car as done in European countries and Japan. The detailed characteristics of SDs were investigated to provide an idea of how to treat them in order to meet a future expected enforcement.  相似文献   

9.
The method described below recovers zinc, a valuable metal that is present in high concentrations in filter ash from the thermal treatment of waste, and returns the filter ash stripped of heavy metals to the combustion process in order to destroy organic substances. On an industrial scale, the heavy metals in the filter ash were mobilized by means of hydrochloric acid in the acidic fluids produced in the flue-gas scrubbing process without the addition of further chemicals. A pilot plant for implementing the selective reactive extraction (SRE) method on the ash extracts, using a highly selective complexant, was operated over a period of several months in order to obtain a concentrated, high-purity zinc salt solution (mono metal solution). A zinc depletion rate of 99.8% in the aqueous extract was achieved using mixer-settler units. The residual zinc concentration in the waste water was then < 2 mg L(-1). By stripping the loaded organic phase, a concentrated, high-purity mono metal solution with 190 g L(-1) zinc was obtained. Zinc metal with a purity > 99.99% is then separated by means of electrolysis. To destroy organic substances present in the filter ash, particularly dioxins and furans, the extracted filter ash cake was returned to the combustion process together with household waste. Plant operation, raw and pure gas parameters, and quality of the bottom ash produced were not impacted by such recirculation. The profitability of the overall process is attributable both to the recovery of valuable zinc metal and to the cost savings made in waste water treatment and in the disposal of the waste combustion residues because the remaining mixture of filter ash and bottom ash can be reused in a combined form. This method therefore supports the sustainable and economically viable reuse of filter ash.  相似文献   

10.
The within-site correlations between soil respiration rates,lead (Pb), mercury (Hg) and cadmium (Cd) concentrations andorganic matter quality variables were investigated at four sites in southern Sweden. The aim was to study whether the within-site variation in heavy metal concentrations could beused to monitor biological effects of regional deposition of heavy metals. Two sites in the south-west, one in the mid-southof the country, and one in south-east were investigated. At the south-eastern, least contaminated, site there were no correlations between soil respiration rate, and either organicmatter quality variables or heavy metal concentrations. At the remaining sites, negative correlations were found between Pb andsoil respiration rate. However, at two of these three sites there was a covariation with cellulose that could account for these correlations. The within-site variation of pH and total nitrogen (N) was low, and did not show any correlative general trends with either respiration rate or heavy metals. Meta analysis showed that negative correlations between Pb or Hg, on the one hand, and cellulose or hemicellulose on the other weregenerally found in within-site investigations. However, this does not necessarily explain the correlation between Pb and soil respiration, as was shown for the southernmost site. A PLS model of soil respiration rates at this site, using allmeasured variables, including heavy metals, explained more variation than a model developed using only mor layer thickness,pH, carbohydrate, ash and nitrogen concentrations, as independent variables. Thus there is a risk of toxic effects from Pb even at the levels found in south-western Sweden today(>120 g Pb * g dw-1). However, since the correlationsbetween heavy metals and cellulose were not significantly different at the different sites, random sampling variation could not be ruled out as an explanation of the different results for the different sites. The causes of the correlationbetween organic matter quality and heavy metals have not yet been clarified. Analysis of mor samples incubated in thelaboratory for 2 yr with 1200 g Pb * g dw-1 or 5 gHg * g dw-1 did not show any differences in carbohydrate composition, compared to control samples. This shows that within-site studies of correlations between respiration rate and heavy metals have to be combined with studies of metal additions to soils and analysis of organic matter quality beforeany valid conclusions can be made.  相似文献   

11.
The Swedish nationwide surveys of atmospheric heavy metal deposition in 1968/70 – 1995 using bryophytes (carpet-forming mosses) as monitors are reviewed. Considered are cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), mercury (Hg), nickel (Ni), vanadium (V), and zinc (Zn). The close agreement between data obtained with deposition (precipitation) collectors and moss carpet analysis is documented briefly, as well as measures of quality control and assessment of reproducibility. Since 1968/70, the deposition rate of the heavy metals considered has declined gradually and evenly, particularly in the southern parts of the country, reflecting an improvement of general air quality due to decreasing dust emission from mainly industry and fossil fuel combustion in northern and western Europe. By far the greatest absolute decrease in deposition rate was measured in Fe, which is a main constituent of most man-generated dust particles. However, the greatest per cent decreases in deposition rates were measured for Pb. The Pb concentration of moss carpets in Sweden as a whole in 1995 was only 11% of the value in 1968/70. Corresponding figures for Fe was 20%, Cd 24%, Ni 28%, Hg 31%, V 43%, Zn 51%, and Cu 52%. For Zn the current deposition rate seems to approach a natural baseline, whereas deposition of the other seven elements are still decreasing according to the surveys of 1990 and 1995.  相似文献   

12.
The suitability of shredded tires or "tire chips" for use in the leachate collection drainage layer of a municipal solid waste landfill was investigated in terms of the: (1) compressibility of the tire chips and resulting changes in hydraulic conductivity under varying applied loads, and (2) effect of leachate pH on the shredded tries compressibility and hydraulic conductivity behavior. A constant head hydraulic conductivity apparatus was fabricated to measure the hydraulic conductivity of the tire shred sample under different axial strains. Further, the fabricated assembly was capable of measuring hydraulic conductivity of the sample at various sample locations at a given strain level. One aim of this study was to provide supporting information for permission to use tire chips as an alternative to crushed stone in the leachate collection system of a landfill. Shredded tires from two different sources were used in this study to investigate any differences in the sensitivity of the shredding process to compressibility and hydraulic conductivity responses under varied applied loads. Under applied vertical loads resulting in average vertical stresses of up to 440 kPa, equivalent to over 50 m of waste, the maximum normal strain recorded in each type of tire chip was observed to plateau at a strain level near or slightly greater than 0.5. The results of the permeability testing indicated average hydraulic conductivity values ranging between 0.67 and 13.4 cm/s under average applied normal stresses ranging from approximately 60 to 335 kPa and strain increments between 0.3 and 0.5. These results are one to three orders of magnitude higher than the hydraulic conductivity typically specified for drainage layers in leachate collection systems of 0.01 cm/s. Additional tests were also carried out to identify how landfill leachate and varied pH levels may affect the compressibility and hydraulic conductivity of the shredded tires. Care should be exercised in extending these results to field conditions, as the results presented are based on limited experimental testing data and a limited time frame.  相似文献   

13.
Soil translocation for recultivation of soil removed from construction sites and for the preparation of refilled lysimeters inevitably involves disturbance of soil structure, and, if intermediate storage is included, also drying and rewetting of the soil. We report on an experiment with model forest ecosystems, where uncontaminated forest subsoils were covered with non-contaminated or freshly heavy metal (mainly Zn and Cu) contaminated topsoil in large lysimeters. Monitoring of the chemical composition of the drainage water revealed two distinct soil conditioning phases. During an initial phase of about a year strongly elevated nitrate and sulfate concentrations occurred that were attributed to a mineralisation flush caused by the increased accessability of mineralisable nitrogen and sulfur in destroyed aggregates. These effects were significantly larger in lysimeters with calcareous subsoil than in those with acidic subsoil. The second phase was characterised by a gradual decrease in dissolved organic carbon and sulfate concentrations, in particular in the acidic subsoil. This decrease may be attributed to the depletion of pools made accessible during aggregate destruction or the formation of new aggregates. These chemical changes had only little effects on the concentrations of copper and zinc in the drainage water. Based on our results, it can be concluded that large refilled lysimeters can be used for many purposes without risk of compromised results, if a conditioning phase of about 1 year with sufficiently moist soil conditions is respected. Nevertheless, gradual changes in soil chemical characteristics still occur after this initial phase. Implications for the recultivation of sites using relocated soils are discussed.  相似文献   

14.
Phosphorus (P), aluminum (Al), and iron (Fe) stream chemistry were assessed for high discharge snowmelt events at the Bear Brook Watershed, Maine (BBWM) during December 2001 and February 2002 and compared with results from a January 1995 study of the same streams. The West Bear catchment has been subjected to artificial acidification since 1989. The East Bear catchment is the untreated reference. Total (acid soluble) Al, Fe, and P were positively correlated with discharge during the 2001–2002 events. However, dissolved P concentrations remained low (≤0.1 μmol L-1) during high discharge events as pH decreased in both streams.For example, in 2001, total P concentration increased to 1.7 μmol L-1 during the rising limb of the hydrograph in West Bear, approximately five times the value in East Bear. During the same event, in West Bear and East Bear dissolved Al concentrations increased to 21 and 6.3 μmol L-1, respectively, while total Al concentrations increased to 166 and 30 μmol L-1, respectively. Dissolved Fe concentrations remained ≤0.9 μmol L-1 in both streams during all study events. However, total Fe concentrations in 2001 increased to 239 and 4.1 μmol L-1 for West Bear and East Bear, respectively. Total Al and Fe declined parallel to total P after peaking during all study periods. Nearly all of the base cations were in dissolved form during the three events, indicating that total Al in West and East Bear Brooks is not associated with primary minerals such as feldspars. We conclude that particulate Al, Fe, and P are chemically linked during transport at high discharge in these episodically and chronically acidified streams.  相似文献   

15.
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.  相似文献   

16.

The primary goal of this work is to develop a technology that allows for the recovery of metal values from waste products, thereby promoting the wise and efficient use of our nation's resources. To achieve this goal, an industrial waste of El Kriymat boiler fly Ash was used for recovering its content of vanadium, nickel and zinc. About 97, 95 and 99% respectively of these economic elements were first dissolved from boiler fly ash magnetic concentrate (after physical concentration). Leaching experiments using optimum conditions include: 180 g/L sulfuric acid concentration and 4% solid/solid proportion manganese dioxide acts as an oxidant at 80 °C. The recovery of vanadium (V) metal ions was carried out using 3% Alamine 336 in kerosene at an equilibrium pH value of 0.9. Subsequently, 15% sodium sulfide solution was used for co-precipitation of nickel and zinc metal ions in the raffinate solution at pH value of 3.5.

Graphical Abstract
  相似文献   

17.
Mining operations result in a wide range of environmental impacts: acid mine drainage (AMD) and acid sulfate soils being among the most common. Due to their acidic pH and high soluble metal concentrations, both AMD and acid sulfate soils can severely damage the local ecosystems. Proper post‐mining management practices are necessary to control AMD‐related environmental issues. Current AMD‐impacted soil treatment technologies are rather expensive and typically not environmentally sustainable. We conducted a 60‐day bench‐scale study to evaluate the potential of a cost‐effective and environment‐friendly technology in treating AMD‐impacted soils. The metal binding and acid‐neutralizing capacity of an industrial by‐product, drinking water treatment residuals (WTRs) were used for AMD remediation. Two types of locally generated WTRs, an aluminum‐based WTR (Al‐WTR) and a lime‐based WTR (Ca‐WTR) were used. Highly acidic AMD‐impacted soil containing very high concentrations of metals and metalloids, such as iron, nickel, and arsenic, was collected from the Tab‐Simco coal mine in Carbondale, Illinois. Soil amendment using a 1:1 Al‐ and Ca‐WTR mix, applied at 5 and 10 percent rates significantly lowered the soluble and exchangeable fractions of metals in the AMD‐impacted soil, thus lowering potential metal toxicity. Soil pH increased from an extremely acidic 2.69 to a near‐neutral 6.86 standard units over the 60‐day study period. Results from this preliminary study suggest the possibility of a successful scale‐up of this innovative, cost‐effective, and environmentally sustainable technology for remediating AMD‐impacted acid sulfate soils.  相似文献   

18.
Indications of possible negative effects of lead (Pb) and mercury(Hg) on microbial respiration in Southern Swedish forest humus layers led to experiments on dose-response relationships by additions of metal salts in the laboratory. Respiration rates andweight loss due to decomposition of organic material were measured. For relevance to field situations metal doses were low,the time span was long, 550 days including freeze storage, and microbial activity was kept up by plant litter additions. We looked for effects of Pb and Hg at levels moderately elevated above the Southern Swedish reference, as well as combined effectsof Pb + Hg. A reduction in respiration and decomposition of10% was found at about 225–245 g g-1 of total Pb, i.e. ata Pb level elevated 3.5 times. Although small effects of Hg werefound even at the lowest dose level, 10% inhibition of microbialactivity appeared temporarily at about 2–3 g g-1 of total Hg, i. e. at 6–8 times the reference level. There were nolong-term additive effects of Pb and Hg on decomposition. Type of anion had a strong influence on the test, chlorides of Pbbeing more toxic than nitrates. Long-term monitoring and maintenance of microbial activity during the experiment were prerequisites for the occurrence of effects at low metal levels.  相似文献   

19.
Leaching of heavy metals in acid mine drainage.   总被引:1,自引:0,他引:1  
Acid mine drainage is one of the most serious environmental problems that the coal and metal mining industry is currently facing. The generation of low pH drainage enhances the dissolution of heavy metals in water. The samples used in this research originated from three pits at mine dumps. In a study reported in this paper, three types of tests; namely static test, kinetic test and column test were conducted to estimate acid generation and acid neutralization reaction rates, and to predict the solubility of metals and their release rates. Static test showed that all samples had a pH of net acid generation (NAG pH) <4, a net acid producing potential (NAPP) >10 kg H2SO4tonne(-1), and a S-content >3%, which can be classified as a high acid-forming capacity. Simulated runoff in the column tests was equivalent to 5-year average rainfall in Indonesia, the resultant leachates showed acidic behaviour (pH < 3.5). Based on the results, it was found that high mobilization of heavy metals (Cr, Cu, Zn, Cd and Pb) takes place under strong acidic conditions (pH approximately equal 2).  相似文献   

20.
Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号