首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Effler, Steven W., Anthony R. Prestigiacomo, David A. Matthews, and Feng Peng, 2012. Sources and Sinks of Phosphorus for a Perturbed Stream and the Effects of Mineral Deposits. Journal of the American Water Resources Association (JAWRA) 48(2): 321‐335. DOI: 10.1111/j.1752‐1688.2011.00617.x Abstract: Patterns of concentrations and loading rates of multiple forms of phosphorus (P) are resolved and analyzed along Ninemile Creek, New York, a stream perturbed by a domestic waste discharge and residual effects of a closed industry. This analysis is based on biweekly monitoring of total, dissolved, and soluble reactive P (SRP) for 19 months at four sites that bracket each of these effects, and 15 years of biweekly measurements at the two sites that bound industrial deposits. The minerogenic particle populations of the stream and the surficial sediments along the reach with extensive CaCO3 and clay mineral deposits are characterized with an individual particle analysis technique. Mass balance analyses depict: (1) increasing nonpoint inputs of particulate and dissolved organic P along the stream length; (2) input of P from a domestic waste facility, almost entirely in the form of SRP; and (3) a compensating downstream loss of SRP over the reach with the extensive industrial deposits of CaCO3. The downstream sink process for SRP is attributed to sorption processes with minerogenic deposits. The domestic waste‐based source and the compensating industrial waste‐based sink are noteworthy fluxes relative to other prevailing loads received by downstream Onondaga Lake, for which a major rehabilitation program targeting cultural eutrophication is underway. The P source/sink conditions of this stream are considered in the context of this rehabilitation program.  相似文献   

2.
The practice of vermiculture is at least a century old but it is now being revived worldwide with diverse ecological objectives such as waste management, soil detoxification and regeneration and sustainable agriculture. Earthworms act in the soil as aerators, grinders, crushers, chemical degraders and biological stimulators. They secrete enzymes, proteases, lipases, amylases, cellulases and chitinases which bring about rapid biochemical conversion of the cellulosic and the proteinaceous materials in the variety of organic wastes which originate from homes, gardens, dairies and farms. The process is odour free because earthworms release coelomic fluids in the decaying waste biomass which has anti-bacterial properties which kills pathogens. The species used in India were Indian blue (Perionyx excavatus), African night crawler (Eudrilus euginae) and the Tiger worm (Elsinia foetida). E. foetida was used in Australia. E. euginae was found to have higher feeding, growth and biodegradation capacity compared to other two species.Earthworm action was shown to enhance natural biodegradation and decomposition of wastes (60–80 percent under optimum conditions), thus significantly reducing the composting time by several weeks. Within 5 to 6 weeks, 95–100 percent degradation of all cellulosic materials was achieved. Even hard fruit and egg shells and bones can be degraded, although these may take longer.  相似文献   

3.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

4.
Efforts have been made to convert the guar gum industrial waste into a value-added product, by employing a new earthworm species for vermicomposting e.g. Perionyx sansibaricus (Perrier) (Megascolecidae), under laboratory conditions. Industrial lignocellulosic waste was amended with other organic supplements (saw dust and cow dung); and three types of vermibeds were prepared: guar gum industrial waste + cow dung + saw dust in 40: 30: 30 ratio (T1), guar gum industrial waste + cow dung + saw dust in 60: 20: 20 ratio (T2,), and guar gum industrial waste + cow dung + saw dust in 75: 15: 10 ratio (T3). As compared to initial concentrations, vermicomposts exhibited a decrease in organic C content (5.0–11.3%) and C:N ratio (11.1–24.4%) and an increase in total N (18.4–22.8%), available P (39.7–92.4%), and exchangeable K (9.4–19.7%) contents, after 150 days of vermicomposting. A vermicomposting coefficient (VC) was used to compare of vermicomposting with the experimental control (composting). P. sansibaricus exhibited maximum value of mean individual live weight (742.8 ± 21.1 mg), biomass gain (442.94 ± 21.8 mg), growth rate (2.95 ± 0.15 mg day−1), cocoon numbers (96.0 ± 5.1) and reproduction rate (cocoons worm−1 day−1) (0.034 ± 0.001) in T2 treatment. In T3 maximum mortality (30.0 ± 4.01 %) in earthworm population was observed. Overall, T2 vermibed appeared as an ideal substrate to manage guar gum industrial waste effectively. Vermicomposting can be proposed as a low-input basis technology to convert industrial waste into value-added biofertilizer.  相似文献   

5.
Atmospheric reaeration is a natural mechanism of oxygen transfer from the atmosphere to a water body. In practice, stream water quality models are developed with reaeration coefficients (K2) estimated by predictive equations. This leads to uncertainties in modeling analysis because these equations are empirical in nature and may yield greatly different K2 values for the same stream. Values of K2 may be adjusted in model calibration, but unfortunately, values of other model parameters are no less easy to identify and require adjustment in model calibration as well. Therefore, validity of a stream model would be enhanced significantly if K2 could be determined directly and reliably. In this research, values of K2 in the Canandaiqua Outlet in Central New York have been measured by using a gas tracer method. A successful modeling analysis was conducted using these K2 values. As a result, effluent limitations of several waste water discharges into the Outlet were established. It was concluded that field measurements of reaeration rate would improve modeling results significantly, and that the gas tracer method can be easily incorporated into intensive water quality surveys normally required for stream modeling.  相似文献   

6.
The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between ~100 and 140 μmol l?1. Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by ~20 μmol l?1 during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 μmol l?1, which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 μmol l?1.  相似文献   

7.
Speiran, Gary K., 2010. Effects of Groundwater-Flow Paths on Nitrate Concentrations Across Two Riparian Forest Corridors. Journal of the American Water Resources Association (JAWRA) 46(2):246-260. DOI: 10.1111/j.1752-1688.2010.00427.x Abstract: Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/l beneath fields to 2 mg/l beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/l to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.  相似文献   

8.
ABSTRACT: Algal blooms, defined as chlorophyll α concentrations greater than 40 μg l?1, are common in Lake Okeechobee, Florida. Using logistic regression techniques, we have developed equations that relate limnological variables to algal bloom occurrence in four distinct open-water regions of this large shallow lake: central pelagic, northwest, southwest, and a transition region between the western and pelagic regions. Wind velocity and total phosphorus, which are closely related to resuspended material in the central region, are negatively related to algal bloom occurrence there. In the transition region, algal bloom occurrence is positively related to total nitrogen and wind velocity. Algal bloom occurrence is strongly and positively related to total nitrogen and total phosphorus concentrations in the western regions. The logistic regression model predicts an algal bloom probability greater than 95 percent in the northwest region when total phosphorus exceeds 0.10 mg l?1 and total nitrogen exceeds 2.5 mg l?1. In the southwest region the model predicts algal bloom probability of 100 percent when total phosphorus exceeds 0.10 mg l?1 and total nitrogen exceeds 2.8 mg l?1. Given 1994 mean total phosphorus concentrations of 0.05 and 0.04 mg l?1 in the northwest and southwest regions, respectively, total nitrogen would have to remain below 1.32 and 1.43 mg l?1, respectively, to keep the algal bloom probability below 10 percent. Because the lake is heterogenous, such nutrient standards should be considered on an in-lake regional basis for Lake Okeechobee.  相似文献   

9.
Abstract: A public opinion survey was carried out in Montana to ascertain if the public identifies a level of benthic (bottom‐attached) river and stream algae that is undesirable for recreation. The survey had two parts; an On‐River survey and a By‐Mail survey. The On‐River survey was conducted via 44 trips randomly scheduled throughout the state during which recreators were interviewed in‐person at the stream. Selection of stream segments and survey dates/times was based on known, statewide recreational use patterns. By‐Mail survey forms were sent to 2,000 individuals randomly selected from Montana’s Centralized Voter File (CVF) available from the Montana Secretary of State. The CVF was current through 2004 and represented over 85% of the state’s eligible voting population. In both surveys, eight randomly ordered photographs depicting varying levels of stream benthic algae were presented, and participants were asked if the algae level shown was desirable or undesirable for recreation. Survey form design, selection of photographs, and pretesting followed acceptable protocols that limited unintentional bias through survey execution. There were 433 returned forms (389 complete) for the By‐Mail survey, while the On‐River survey documented 563 interviews. In both surveys, as benthic algal chlorophyll a (Chl a) levels increased, desirability for recreation decreased. (Other measures of benthic algae biomass are presented as well.) For the public majority, mean benthic Chl a levels ≥200 mg/m2 were determined to be undesirable for recreation, whereas mean levels ≤150 mg Chl a/m2 were found to be desirable. Error rates were within the survey’s statistical design criteria (≤5%). The largest potential error source was nonresponse in the By‐Mail survey; however, the population represented by nonrespondents would have to exhibit profoundly different perceptions of river and stream algae to meaningfully alter the results. Results support earlier work in the literature suggesting 150 mg Chl a/m2 represents a benthic algae nuisance threshold.  相似文献   

10.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

11.
ABSTRACT: Stream channel stability is affected by peak flows rather than average annual water yield. Timber harvesting and other land management activities that contribute to soil compaction, vegetation removal, or increased drainage density can increase peak discharges and decrease the recurrence interval of bankfull discharges. Increased peak discharges can cause more frequent movement of large streambed materials, leading to more rapid stream channel change or instability. This study proposes a relationship between increased discharge and channel stability, and presents a methodology that can be used to evaluate stream channel stability thresholds on a stream reach basis. Detailed surveys of the channel cross section, water surface slope, streambed particle size distribution, and field identification of bankfull stage are used to estimate existing bankfull flow conditions. These site specific stream channel characteristics are used in bed load movement formulae to predict critical flow conditions for entrainment of coarse bed material (D84 size fraction). The “relative bed stability” index, defined as the ratio of critical flow condition to the existing condition at bankfull discharge, can predict whether increased peak discharges will exceed stream channel thresholds.  相似文献   

12.
ABSTRACT: Fecal contamination and organic pollution of an agricultural drainage in northeast Indiana was high. Bacterial counts (total coliform, TC; fecal coliform, FC; and fecal streptococcus, FS) and biochemical oxygen demand (BOD) were used to assess waste concentrations. Coliform counts indicated that sections of the drainage receiving septic effluent had waste concentrations far in excess of public health standards (mean FC = 550,000/100 ml). Areas of drainage remote from septic tank pollution were found to occasionally meet federal public health standards for whole body contact recreation but generally these areas had twice the allowable limit of 200 FC/100 ml. Bacterial contamination was highest during runoff events when the median values for TC, FC, and FS were 5, 3, and 17 times greater, respectively, than the median values during low stream discharge. Surface flows carried contaminants from unconfined livestock operations and fecally contaminated sediment was transported by high waters. During one runoff event a BOD loading of 36.7 kg/km2 was recorded and the peak BOD concentration observed was 16 mg/l. A discharge of liquid manure from a confined livestock operation caused a major fish kill. Pollution from septic tanks and unconfined livestock is greatest at high stream discharge when dilution reduces the impact on aquatic life.  相似文献   

13.
Angradi, Ted R., David W. Bolgrien, Matt A. Starry, and Brian H. Hill, 2012. Modeled Summer Background Concentration of Nutrients and Suspended Sediment in the Mid‐Continent (USA) Great Rivers. Journal of the American Water Resources Association (JAWRA) 48(5): 1054‐1070. DOI: 10.1111/j.1752‐1688.2012.00669.x Abstract: We used regression models to predict summer background concentration of total nitrogen (N), total phosphorus (P), and total suspended solids (TSS), in the mid‐continent great rivers: the Upper Mississippi, the Lower Missouri, and the Ohio. From multiple linear regressions of water quality indicators with land use and other stressor variables, we determined the concentration of the indicators when the predictor variables were all set to zero — the y‐intercept. Except for total P on the Upper Mississippi River, we could predict background concentration using regression models. Predicted background concentration of total N was about the same on the Upper Mississippi and Lower Missouri Rivers (430 μg l?1), which was lower than percentile‐based values, but was similar to concentrations derived from the response of sestonic chlorophyll a to great river total N concentration. Background concentration of total P on the Lower Missouri (65 μg l?1) was also lower than published and percentile‐based concentrations. Background TSS concentration was higher on the Lower Missouri (40 mg l?1) than the other rivers. Background TSS concentration on the Upper Mississippi (16 mg l?1) was below a threshold (30 mg l?1) designed to protect aquatic vegetation. Our model‐predicted concentrations for the great rivers are an attempt to estimate background concentrations for water quality indicators independent from thresholds based on percentiles or derived from stressor‐response relationships.  相似文献   

14.
ABSTRACT: An investigation of treated municipal wastewaters discharged into Texas streams was conducted to determine the probable effect of concentrations of ammonia in receiving waters, based on existing data on ammonia levels which are lethal to various species of fish. Recorded data for most Texas cities were analyzed. Based on existing toxicity criteria for ammonia of 1/10 TLm= 0.31 mg/1 NH3-N, employing known discharge flow rates, and 7-day, 5-year or 7-day, 10-year low flows in Texas streams, appreciable numbers of sites were found to pose a threat to various species of fish. Using the bluegill (Lepomis macrochirus) as a median tolerance limit species, data from 65 cities which met the aforecited requirements, were analyzed. Those included a total of 92 wastewater effluents. Sixty-nine percent of those cities and 70% of their effluents exceeded the 0.31 mg/1 NH3-N limit in the stream below the discharge point. Thirty-seven percent of the cities equaled or exceeded the 96-hour TLm concentration limit of 3.1 mg/1 ammonia. Based on the 10 mg/1 NO3-N standard for intake water for potable supplies, 32% of the effluents resulted in a stream concentration which exceeded 10 mg/1, assuming a straight conversion of NH3-N to NO3-N.  相似文献   

15.
During 1987–1992, a mandatory program to control phosphorus discharges was implemented at dairy operations located to the north of Lake Okeechobee, Florida, USA. Thirty of 48 dairies participated in this program and implemented best management practices (BMPs), which included the construction of intensive animal waste management systems. Eighteen dairies closed their milkproducing operations under a government-funded buyout program. In this paper, we compare trends in runoff total phosphorus (TP) concentrations among the dairies that remained active and implemented BMPs. A central feature of the dairy waste management system is the high intensity area (HIA), defined as the milking barn and adjacent vegetation-free land, encircled by a drainage ditch and dike. Animal waste from the HIA is diverted into anaerobic lagoons and storage ponds, from which water is periodically removed and used for irrigation of field crops. The impacts of BMP construction on runoff TP concentrations were immediate and, in most cases, dramatic. Average TP concentrations declined significantly (P < 0.001), from 9.0 to 1.2 mg TP liter–1 at dairies in one basin (Lower Kissimmee River), and from 2.6 to 1.0 mg TP liter–1 in another (Taylor Creek/Nubbin Slough). Some sites experienced greater declines in TP than others. To elucidate possible causes for the difference in response, a multivariate statistical model was utilized. Independent variables included soil pH, soil drainage characteristics, spodic horizon depth, and the areas of different BMP components (pasture, HIA, spray fields). The analysis significantly separated dairies with the highest and lowest runoff TP concentrations. Lowest TP occurred at dairies having particular soil characteristic (shallow spodic horizon) and certain BMP features (large HIA and small heard pastures).  相似文献   

16.
ABSTRACT: Autochthonous energy input, in the form of periphyton production and growth, was studied before and after partial logging of the watershed surrounding School Brook, a small tributary of the Aroostook River, Maine. Due to infection by the spruce budworm (Chiristoneura fumiferana), the buffer strip on one bank of the stream was logged and only limited riparian vegetation was left. Though impacts in subsequent years are unknown, the effect of the logging on the periphyton community was insignificant during the nine months following cutting, seemingly due to several factors. Because only 5 percent of the canopy was actually removed, the intensity of available light changed little. Small springs in the area helped maintain a stable thermal regime, and only a small portion of the low gradient watershed was actually logged. Consequently, the nutrients reaching the stream did not change. The relatively low concentrations of nitrates (< 0.3 mg/l) and phosphates (< 10 μg/l), both before and in the first nine months after logging, reflect the limited autochthonous input, thereby reducing the effect of this limited cutting on the stream community.  相似文献   

17.
Three Egyptian industrial wastewater management programmes   总被引:1,自引:0,他引:1  
A pre-treatment programme for wastewater from factories, representing three main industrial sectors in Egypt, has been developed. The first case study was a factory producing potato-chips. Wastewater discharged from this factory was characterized by high values of BOD, SS and oil and grease (6000 mgO2 l–1, 6577 mg l–1 and 119 mg l–1 respectively). Chemical treatment using lime and lime aided by polyelectrolyte achieved good results. Residual values of BOD and SS after treatment were 97 mg l–1 and 49 mg l–1, respectively. Oil and grease concentrations were reduced by 91 percent. Treatment via activated sludge at a detention time of 4 hrs produced good quality effluent. The second case study was an automobile company, representing the metal finishing industry. Analyses of wastewater samples from the degreasing, phosphating and painting departments, as well as the end-of-pipe effluent were conducted. The end-of-pipe effluent contained high concentrations of oil and grease (366 mg l–1), phosphorous (111 mg l–1) and zinc (81 mg l–1). Chemical treatment of end-of-pipe wastewater using ferric chloride aided by lime, produced high quality effluent. The third sector was the chemical industry. For this purpose a paint factory was selected. Characteristics of raw wastewater varied widely according to the production rate. Average values of COD and BOD were 1950 mg l–1 and 683 mg l–1. Oil and grease ranged from 63 to 1624 mg l–1. Chemical treatment using ferric chloride in combination with lime at the optimum operating conditions achieved good results. Residual values after treatment of COD, BOD and oil and grease reached 120, 36 and 8.6 mg l–1, respectively. An engineering design for each case study has been prepared.  相似文献   

18.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

19.
Allums, Stephanie E., Stephen P. Opsahl, Stephen W. Golladay, David W. Hicks, and L. Mike Conner, 2012. Nitrate Concentrations in Springs Flowing Into the Lower Flint River Basin, Georgia U.S.A. Journal of the American Water Resources Association (JAWRA) 48(3): 423-438. DOI: 10.1111/j.1752-1688.2011.00624.x Abstract: Analysis of long-term data from (2001-2009) in four springs that discharge from the Upper Floridan aquifer into the Flint River (southwestern Georgia, United States) indicate aquifer and surface-water susceptibility to nutrient loading. Nitrate-N concentrations ranged from 1.74 to 3.30 mg/l, and exceeded historical levels reported for the Upper Floridan aquifer (0.26-1.52 mg/l). Statistical analyses suggest increasing nitrate-N concentration in groundwater discharging at the springs (n = 146 over eight years) and that nitrate-N concentration is influenced by a dynamic interaction between depth to groundwater (an indicator of regional hydrologic conditions) and land use. A one-time synoptic survey of 10 springs (6 springs in addition to the 4 previously mentioned) using stable isotopes generated δ15N-NO3 values (4.8-8.4‰ for rural springs and 7.7-13.4‰ for developed/urban springs) suggesting mixed sources (i.e., fertilizer, animal waste, and soil organic nitrogen) of nitrate-N to rural springs and predominantly animal/human waste to urban springs. These analyses indicate a direct relation between nitrate-N loading since the 1940s and intensification of agricultural and urban land use. This study demonstrates the importance of evaluating long-term impacts of land use on water quality in groundwater springs and in determining how rapidly these changes occur.  相似文献   

20.
The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号