首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In developed countries, ecological restoration is a widely accepted practice to restore the productivity of degraded coal mine spoils and prevent mine‐degraded sites from acting as sources of pollution. During the past decade, ecologists realized the global need for ecological restoration, and the benefit of restoration is now assessed on the basis of ecosystem services that the restored lands can provide. In this article, the knowledge gap between crude reclamation and ecological restoration is examined, the steps crucial to ecological restoration in tropical conditions are identified, and simple guidelines are given for easy understanding. Restoration issues, such as modification of the forestry restoration approach, reestablishment of biodiversity, removal and reuse of topsoil during progressive and final stages of ecological restoration, drainage, promotion of a plant‐succession‐based approach, use of a grass–legume mixture as an initial colonizer, stabilization of steep slopes, and soil blanketing, are discussed. Those attributes of a degraded ecosystem that are responsible for the success of any restoration project are critically examined, and the opportunities provided by ecological restoration are explored.  相似文献   

2.
3.
With the ending of the Cold War, several federal agencies are reclaiming land through remediation and restoration and are considering potential future land uses that are compatible with current uses and local needs. Some sites are sufficiently contaminated that it is likely that the responsible federal agency will retain control over the land for the foreseeable future, providing them with a stewardship mission. This is particularly true of some of the larger Department of Energy (DOE) facilities contaminated during the production of nuclear weapons. The use of the term “restoration” is explored in this paper because the word means different things to the public, ecologists, and environmental managers responsible for contaminated sites, such as Superfund sites and the DOE facilities. While environmental restoration usually refers to remediation and removal of hazardous wastes, ecological restoration refers to the broader process of repairing damaged ecosystems and enhancing their productivity and/or biodiversity. The goals of the two types of restoration can be melded by considering environmental restoration as a special case of ecological restoration, one that involves risk reduction from hazardous wastes, and by broadening environmental restoration to include a more extensive problem-formulation phase (both temporal and spatial), which includes the goal of reestablishing a functioning ecosystem after remediation. Further, evaluating options for the desired post remediation result will inform managers and policy-makers concerning the feasibility and efficacy of environmental restoration itself.  相似文献   

4.
Doyle, Martin W. and F. Douglas Shields, 2012. Compensatory Mitigation for Streams Under the Clean Water Act: Reassessing Science and Redirecting Policy. Journal of the American Water Resources Association (JAWRA) 48(3): 494-509. DOI: 10.1111/j.1752-1688.2011.00631.x Abstract: Current stream restoration science is not adequate to assume high rates of success in recovering ecosystem functional integrity. The physical scale of most stream restoration projects is insufficient because watershed land use controls ambient water quality and hydrology, and land use surrounding many restoration projects at the time of their construction, or in the future, do not provide sufficient conditions for functional integrity recovery. Reach scale channel restoration or modification has limited benefits within the broader landscape context. Physical habitat variables are often the basis for indicating success, but are now increasingly seen as poor surrogates for actual biological function; the assumption “if you build it they will come” lacks support of empirical studies. If stream restoration is to play a continued role in compensatory mitigation under the United States Clean Water Act, then significant policy changes are needed to adapt to the limitations of restoration science and the social environment under which most projects are constructed. When used for compensatory mitigation, stream restoration should be held to effectiveness standards for actual and measurable physical, chemical, or biological functional improvement. To achieve improved mitigation results, greater flexibility may be required for the location and funding of restoration projects, the size of projects, and the restoration process itself.  相似文献   

5.
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.  相似文献   

6.
Species-rich semi-natural grasslands have rapidly declined and become fragmented in Northern Europe due to ceased traditional agricultural practices and animal husbandry. Restoration actions have been introduced in many places to improve the habitat conditions and increase the area to prevent any further losses of their ecological values. However, given the limited resources and long time span needed for successful restoration, it is essential to target activities on sites having a suitable initial state and where the effects of restoration are most beneficial for the habitat network. In this paper we present a conceptual framework for evaluating the restoration potential of partially overgrown and selectively managed semi-natural grasslands in a moderately transformed agricultural environment in south-western Finland. On the basis of the spatio-temporal landscape trajectory analysis, we construct potential restoration scenarios based on expected semi-natural grassland characteristics that are derived from land productivity, detected grassland continuum, and date of overgrowth. These scenarios are evaluated using landscape metrics, their feasibility is discussed and the effects of potential restoration are compared to the present extent of open semi-natural grasslands. Our results show that landscape trajectory analysis and scenario construction can be valuable tools for the restoration planning of semi-natural grasslands with limited resources. The approach should therefore be considered as an essential tool to find the most optimal restoration sites and to pre-evaluate the effects.  相似文献   

7.
Major transitions in a multiple-use or mosaic landscape often lead to frictions among new and existing users. In this article, we consider the problem of ecological restoration within a mosaic landscape in which restoration activities elicit feedbacks from individuals and groups that are harmed by restoration outcomes. Using game theory, we identify three potential outcomes ranked by the extent of restoration of ecosystem services and processes: nonstrategic, noncooperative strategic equilibrium, and cooperative bargaining solution. We identify conditions under which additional restoration can decrease the overall flow of ecosystem services and processes. A “strategic restorationist” will cease new restoration activities when the net effect of defensive response moves by farmers offsets gains. Imperfect information regarding expected payoffs to farmers can lead to inefficient overshooting or undershooting the optimal scale, geographical positioning, and form of restoration. Gains to all parties from cooperation might exist. As a case study and to aid model design, we consider restoration activities on California’s upper Sacramento River. An erratum to this article is available at .  相似文献   

8.
绿色矿山建设是矿业领域践行"绿水青山就是金山银山"的重要体现。本文从矿山生态修复的内涵到外延,从问题识别到任务措施,从单一治理修复目标到生态系统功能修复目标,从矿山生态修复系统到与经济社会发展系统相结合等多个方面,系统地梳理矿山生态修复的解决路径,围绕矿业绿色发展提出一系列建议。  相似文献   

9.
Creating False Images: Stream Restoration in an Urban Setting   总被引:1,自引:0,他引:1  
Stream restoration has become a multibillion dollar business with mixed results as to its efficacy. This case study utilizes pre‐ and post‐monitoring data from restoration projects on an urban stream to assess how well stream conditions, publicly stated project goals, and project implementation align. Our research confirms previous studies showing little communication among academic researchers and restoration practitioners as well as provides further evidence that restoration efforts tend to focus on small‐scale, specific sites without considering broader land use patterns. This study advances our understanding of restoration by documenting that although improving ecological conditions is a stated goal for restoration projects, the implemented measures are not always focused on those issues that are the most ecologically salient. What these projects have accomplished is to protect the built environment and promote positive public perception. We argue that these disconnects among publicized goals for restoration, the implemented features, and actual stream conditions may create a false image of what an ecologically stable stream looks like and therefore perpetuate a false sense of optimism about the feasibility of restoring urban streams.  相似文献   

10.
We evaluated ecological monitoring data and landowner perceptions to the federally funded Wetlands Reserve Program (WRP) in a three-county region in Wisconsin. We surveyed landowner satisfaction, involvement, participation, and use of the WRP restoration sites. We found that landowners are satisfied with the overall program (mean, 3.6 ± 0.2 [SE], on a scale of 1–5, with 5 being completely satisfied). WRP restorations significantly increased the area of wetland within the sites surveyed, the increase was primarily of fresh meadow (736.32 ha after restoration). Satisfaction is related to landowner participation during restoration and to the economic incentives provided by the WRP, Landowner satisfaction and the number of plant communities after restoration are unrelated to each other or to restoration and easement costs per hectare. Survey participants recommended some changes to the WRP, including a reduction in the tax rate of land enrolled in the WRP, approval for permanent deer stands, and increased communication with WRP officials during the restoration. Monitoring information collected for WRP restoration sites does not allow assessment of whether WRP sites are functionally equivalent to natural sites. We suggest that the WRP require a more rigorous monitoring program, including guidelines for invasive species control. Managers should also encourage collaborations with external researchers and consider restorations within an experimental framework.  相似文献   

11.
The amount of ecological restoration required to mitigate or compensate for environmental injury or habitat loss is often based on the goal of achieving ecological equivalence. However, few tools are available for estimating the extent of restoration required to achieve habitat services equivalent to those that were lost. This paper describes habitat equivalency analysis (HEA), a habitat-based “service-to-service” approach for determining the amount of restoration needed to compensate for natural resource losses, and examines issues in its application in the case of salt marsh restoration. The scientific literature indicates that although structural attributes such as vegetation may recover within a few years, there is often a significant lag in the development of ecological processes such as nutrient cycling that are necessary for a fully functioning salt marsh. Moreover, natural variation can make recovery trajectories difficult to define and predict for many habitat services. HEA is an excellent tool for scaling restoration actions because it reflects this ecological variability and complexity. At the same time, practitioners must recognize that conclusions about the amount of restoration needed to provide ecological services equivalent to those that are lost will depend critically on the ecological data and assumptions that are used in the HEA calculation.  相似文献   

12.
Under the United States Oil Pollution Act of 1990, natural resource trustees are charged with assessing natural resource impacts due to an oil spill and determining the type and amount of natural resource restoration that will compensate the public for the impacts. Habitat equivalency analysis is a technique through which the impacts due to the spill and the benefits of restoration are quantified; both are quantified as habitat resources and associated ecological services. The goal of the analysis is to determine the amount of restoration such that the services lost are offset by services provided by restoration. In this paper, we first describe the habitat equivalency analysis framework. We then present an oil spill case from coastal Louisiana, USA, where the framework was applied to quantify resource impacts and determine the scale of restoration. In the Louisiana case, the trustees assessed impacts for oiled salt marsh and direct mortality to finfish, shellfish, and birds. The restoration project required planting salt-marsh vegetation in dredge material that was deposited on a barrier island. Using the habitat equivalency analysis framework, it was determined that 7.5 ha of the dredge platform should be planted as salt marsh. The planted hectares will benefit another 15.9 ha through vegetative spreading resulting in a total of 23.4 ha that will be enhanced or restored as compensation for the natural resource impacts.  相似文献   

13.
The goal of restoring ecological integrity in rivers is frequently accompanied by an assumption that a comparative reference reach can be identified to represent minimally impaired conditions. However, in many regulated rivers, no credible historical, morphological or process-based reference reach exists. Resilient restoration designs should instead be framed around naturalization, using multiple analytical references derived from empirically-calibrated field- and model-based techniques to develop an integrated ecological reference condition. This requires baseline data which are rarely collected despite increasing evidence for systematic deficiencies in restoration practice. We illustrate the utility of baseline data collection in restoration planning for the highly fragmented and regulated lower Merced River, California, USA. The restoration design was developed using various baseline data surveys, monitoring, and modeling within an adaptive management framework. Baseline data assisted in transforming conceptual models of ecosystem function into specific restoration challenges, defining analytical references of the expected relationships among ecological parameters required for restoration, and specifying performance criteria for post-project monitoring and evaluation. In this way the study is an example of process-based morphological restoration designed to prompt recovery of ecosystem processes and resilience. For the Merced River, we illustrate that project-specific baseline data collection is a necessary precursor in developing performance-based restoration designs and addressing scale-related uncertainties, such as whether periodic gravel augmentation will sustain bed recovery and whether piecemeal efforts will improve ecological integrity. Given the numerous impediments to full, historical, restoration in many river systems, it seems apparent that projects of naturalization are a critical step in reducing the deleterious impacts of fragmented rivers worldwide.  相似文献   

14.
Stream restoration is one of the most widely used interventions to mitigate urban stormwater impacts and improve water quality. Government agencies have typically focused urban stream restoration efforts on public lands that they already own, even though a substantial portion of stream miles in highly urbanized areas occur on privately owned land. Yet, limited research exists to distinguish household willingness to pay (WTP) for stream restoration occurring on private versus public land. In this study, we use a choice experiment to analyze how household WTP for stream restoration attributes vary by land ownership and distance to the restoration project. Our empirical results indicate that streambank stabilization approaches have positive WTP estimates that are substantially larger in magnitude than those related to riparian vegetation management for clearing or planting trees. In general, estimated total household WTP for each of the four restoration design scenarios on public land is higher than when the same restoration design is located on private land. Nonetheless, estimated household WTP for each restoration design scenario on private land is substantial, retaining the majority of the value found on public land in all cases.  相似文献   

15.
ABSTRACT: Adaptive management is a heuristic approach to treating stream restoration projects as continuous, cyclic experiments, yielding results to be incorporated into future decisions. This comprehensive assessment views failures as surprises that are valuable lessons. Monitoring, evaluation of data, and communication of results are critical; the monitoring results trigger feedback mechanisms to invoke adaptation to the newly acquired information and communication of new hypotheses, treatments, or policies. The principles of adaptive management were applied to a monitoring study of three urban stream restoration sites in Maryland. Data were collected and evaluated for various restoration techniques, including vanes, cross vanes, step pools, root wads, imbricated riprap walls, and coir fiber rolls. Improvements to the existing Maryland design guidelines and policies were developed as the feedback mechanism. With the increasing application of adaptive management in stream restoration efforts, it is likely that repeated failures will be prevented and future restoration projects will be more successful in achieving their goals.  相似文献   

16.
金属尾矿废弃地的生态恢复   总被引:15,自引:2,他引:15  
尾矿废弃地是一种典型的退化生态系统。本文通过对其生态恢复所面临问题的研究,讨论了尾矿废弃地生态恢复的理论和方法,分析了使用外来物种对于尾矿废弃地这一独特的退化生态系统进行恢复的可能性,并探索了尾矿废弃地生态恢复的评价标准。  相似文献   

17.
/ Ecological restoration is increasingly invoked as a tool for the maintenance and regeneration of biodiversity. Yet the conceptual foundations and assumptions underlying many restoration management activities are frequently unclear or unstated. Unforeseen, undesirable consequences of restoration activities may emerge as a result. A general conceptual framework for restoration is needed to better accommodate dynamic habitat systems and evolving biota in restoration strategies. A preliminary framework for stream habitat restoration emphasizing stream habitat-biota development is proposed. As developing systems, streams and stream biota exhibit temporal behaviors that change with stream environments. Underlying the dynamic development of streams is potential capacity. Streams express this capacity as an array of habitats over time and across the landscape. Human land uses in the western United States have rapidly altered aquatic habitats and the processes that shape habitat. As a result, the diversity of native fishes and their habitats has been suppressed. Restoration is fundamentally about allowing stream systems to reexpress their capacities. Several steps are provided to guide stream restoration activities. Key tasks include: identification of the historic patterns of habitat development; identification of developmental constraints; relief of those constraints; classification of sensitive, critical, or refuge habitats; protection of the developmental diversity that remains; and monitoring of biotic responses to habitat development. KEY WORDS: Stream habitat; Stream biota; System capacity; System development; Restoration; Classification  相似文献   

18.
Vegetation in subalpine meadows in the Sierra Nevada Mountains is particularly vulnerable to lowering of groundwater levels because wet meadow vegetation is reliant upon shallow groundwater during the dry summer growing season. These ecosystems are especially vulnerable to channel incision as meadow aquifers are hydrologically connected to tributaries, and many have not yet recovered from previous anthropogenic influences. While instream restoration projects have become a common approach, lack of postrestoration monitoring and communication often result in a trial‐and‐error approach. In this study we demonstrate that preimplementation modeling of possible instream restoration solutions, chosen to raise stream stage and subsequently groundwater levels, is a useful tool for evaluating and comparing potential channel modifications. Modeling allows us to identify strategic locations and specific methods. Results show additional sediment depth and roughness on tributaries along with introduced woody debris (simulated by high roughness) on the Tuolumne River are the most effective means of raising stream stage. Results demonstrate that restoration efforts are most efficient in tributary streams. Managers and planners can more efficiently direct resources while minimizing the potential for negative impacts or failed restoration projects by modeling the possible effects of multiple restoration scenarios before implementation.  相似文献   

19.
白洋淀湿地有"华北之肾"的称号,是京津冀地区的重要水源地之一。近年来白洋淀湿地显现出了生态退化的趋势,生态修复工作正在开展但成效不稳固。从生态系统整体性的角度全面评估白洋淀湿地的基本情况、生态修复工作开展情况,在此基础上提出生态修复过程中将会面临的问题,并提出解决路径。  相似文献   

20.
Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号