首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing demand for water to develop non-agricultural activities is causing water to be diverted to high-value uses at the expense of irrigation. However, agriculture provides a flow of amenities in the desert environment which are not either accounted or paid. Oases are spread all over the globe and are threatened for various reasons among which is the high pressure of demand for fresh water. This paper estimates the recreation use value of an oasis. The paper is based on the Misfat Al-Abryeen oasis in Oman, a man-made area of streams and woodland. The travel cost method is used through an on-site questionnaire distributed to 230 visitors. Around 75% of visitors to the oasis also visited other historical or ecological sites during the same day-trip. The econometric model is estimated using negative binomial regression with endogenous stratification. The average consumer surplus, or benefit, from visiting Misfat Al-Abryeen is estimated at US104.74 per individual per trip. The total social benefit from this oasis is estimated at 104.74 per individual per trip. The total social benefit from this oasis is estimated at 366,590 per year. These results underscore the importance of the role played by irrigated agriculture in the provision of amenity services for the tourism sector in a desert environment. The sustainability of the irrigation activity depends on the recognition of the recreation role of oases and the transfer of part of these benefits to the farmers who maintain the irrigation system. The implementation of an entrance fee to the oasis might increase farmers’ profit by 6–21%.  相似文献   

2.
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.  相似文献   

3.
ABSTRACT: This paper presents a statistically valid index for measuring the performance of irrigation systems. The index is applied to a sample of 39 farms on a watercourse under the warabandi system of irrigation management in India. It is found that while the farmers in fact irrigated almost exactly the total amount of irrigated area as designed, inter-farm variations were considerable. The index shows that the degree of error of managerial effectiveness of irrigation on this watercourse is 20 percent. Therefore it is concluded that the system is performing at 80 percent effectiveness.  相似文献   

4.
Human disturbance in the western Mojave Desert takes many forms. The most pervasive are livestock grazing and off-highway vehicle use. Over the past few decades several areas within this region have been fenced to preclude human disturbance. These areas provide opportunities to study the impact of human activities in a desert ecosystem. This paper documents the response of plant and small mammal populations to fencing constructed between 1978 and 1979 at the Desert Tortoise Research Natural Area, Kern County, California. Aboveground live annual plant biomass was generally greater inside than outside the fenced plots during April 1990, 1991, and 1992. The alien grassSchismus barbatus was a notable exception, producing more biomass in the unprotected area. Forb biomass was greater than that of alien annual grasses inside the fence during all three years of the study. Outside the fence, forb biomass was significantly higher than that of alien grasses only during spring 1992. Percent cover of perennial shrubs was higher inside the fence than outside, while no significant trend was detected in density. There was als more seed biomass inside the fence; this may have contributed to the greater diversity and density of Merriam's kangaroo rats (Dipodomys merriami), long-tailed pocket mice (Chaetodipus formosus), and southern grasshopper mice (Onychomys torridus) in the protected area. These results show that protection from human disturbance has many benefits, including greater overall community biomass and diversity. The significance and generality of these results can be further tested by studying other exclosures of varying age and configurations in different desert regions of the southwestern United States.  相似文献   

5.
ABSTRACT: A preliminary field experiment was conducted for trickle irrigation of winter wheat raised for grain production under arid conditions. Treated waste water was applied for trickle irrigation via a trickle system. Mean total amount of effluent applied was about 5700 m3/ha. In one of the experimental treatments, which was irrigated once a week, a grain yield of over 10,000 kg/ha was obtained, whereas in the other treatments the yields were about 8,500 kg/ha, which are above the mean yield obtained under sprinkler irrigation.  相似文献   

6.
ABSTRACT Rainfall, stream flow and groundwater have been sampled systematically throughout Nebraska since 1970 and analyzed for mineral N and P and the character of any sediments contained. Fallout N and P in rainfall ranges from 5–14 pounds N and 1 pounds P/A/yr, increasing from west to east across the state with increasing rainfall. The amount of NH4-N is essentially double that of NO3-N. The mean concentration of 2ppm N in rainfall is four times the mean N concentration of streams, demonstrating a substantial depolluting action of soils and growing crops. Where nutrient levels of streams are elevated, cause can usually be traced especially to industrial, sewage or livestock waste intrusion and not to crop production practices. The only significant quantity of nutrient N and P induced by cultivation is that accompanying sediments from eroded fields. The P content of Nebraska groundwater has remained essentially constant during the past 10 years while average NO3-N has increased slightly, a period during which farmer fertilizer use quadrupled. During the same time, irrigation acreage has increased by 50%, livestock numbers by 30%, with corresponding growth in human population and attendant industries. Indications are that irrigation practice has contributed more than any other factor to the small increase in groundwater NO3-N recorded. Individual cases do exist where groundwater NO3-N has increased substantially, especially in areas of intensive irrigation agriculture on very sandy soils and elsewhere with irrigation development in the proximity of ancient NO3-N deposits in mantlerock above the water table.  相似文献   

7.
Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r 2 = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400–500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.  相似文献   

8.
ABSTRACT: Systematic sampling of waterways and irrigation runoff from agricultural lands in the North Platte Project of Nebraska in July and August of 1972–1974 demonstrated that phytopathogenic organisms were disseminated. The organisms monitored included the bean common blight bacterium Xanthomonas phaseoli, the bean white mold fungus Whetzelinia sclerotiorum and various nematodes. Although many types of nematodes often were recovered from irrigation water, Heterodera sp. cysts which cause significant disease problems in the valley were found infrequently. Patterns of movement of the bacterial and fungal organisms were correlated with previous or current season infection of bean plants. The short-term survival of X. phaseoli in sterile deionized water may explain the detection of this organism only in runoff or ditches receiving runoff from common blight infected bean fields. Sclerotial bodies of W. sclerotiorum remained viable for at least 10–21 days in flowing water and were found throughout the irrigation waterways. Irrigation of beans with contaminated water can result in both common blight and white mold diseases. Dissemination of phytopathogenic organisms in irrigation reuse systems as well as agricultural land runoff should be considered in irrigation planning and system design.  相似文献   

9.
Use of models to simulate crop production has become important in optimizing irrigation management in arid and semiarid regions. However, applicability and performance of these models differ across regions, due to differences in environmental and management factors. The AquaCrop model was used to simulate soil water content (SWC), evapotranspiration (ET), and yield for grain sorghum under different irrigation regimes and dryland conditions at two sites in Central and Southern High Plains. Prediction error (Pe), estimated as the difference between simulated and measured divided by measured, for SWC ranged from ?17% to 4% in fully irrigated, ?3% to ?10% in limited irrigated, and ?16% to 25% in dryland treatments. The Pe within ±4%, ?5%, and ?17% to 24% were attained for seasonal ET under fully irrigated, limited irrigated, and dryland conditions, respectively. Pe values for grain yield were within those previously reported and ranged from ?10% to 12%, ?12% to 7%, and 9% to 17% for fully irrigated, limited irrigated and dryland conditions, respectively. Overall performance of the AquaCrop model showed it could be used as an effective tool for evaluating the impacts of variable crop and irrigation managements on the production of grain sorghum in the study area. Finally, the application of the model in the study area revealed planting date has a significant impact on sorghum yield and irrigation requirements, but the impact of planting density was negligible. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

10.
To evaluate the accounts of local fishermen, Landsat TM images (1986, 1993, 1999) were examined to assess potential losses in the mangrove forests of the Teacapán–Agua Brava lagoon system, Mexico. A binary change mask derived from image differencing of a band 4/3 ratio was employed to calculate any changes within this forested wetland. The results indicate that by 1986 approximately 18% (or 86 km2) of the mangrove area under study was either dead or in poor condition. The majority of this damage had occurred in the eastern section of the Agua Brava basin, which coincides, with the reports of the elderly fishermen. Examination of aerial photographs from 1970 revealed no adverse impacts in this area and would suggest, as postulated by the fishermen and other scientists, that modifications in environmental conditions following the opening of a canal, Cuautlá canal, in 1972 may have initiated the large-scale mortality. Although these areas of impact are still developing, the results from the satellite data indicate that the majority of the more recent changes are occurring elsewhere in the system. Obvious in the 1999 satellite data, but not so in the 1993, are large areas of mangrove degradation in the northern section of the Teacapán region. In the Agua Brava basin, the more recent transformations are appearing on the western side of the basin. Since long-term records of environmental conditions are absent, it is difficult to determine why these latest changes are occurring or even if the earlier losses were the result of the canal. Potential agents of change that have recently been observed include a hurricane, a second canal, and the uncontrolled expansion of the Cuautlá canal since 1994.  相似文献   

11.
Lepus californicus ), perennial plant cover, and structural diversity of perennial plants were evaluated from spring 1994 through winter 1995 at the Desert Tortoise Research Natural Area (DTNA), in the Mojave Desert, California. Abundance and species richness of birds were higher inside than outside the DTNA, and effects were larger during breeding than wintering seasons and during a high than a low rainfall year. Ash-throated flycatchers (Myiarchus cinerascens), cactus wrens (Campylorhynchus brunneicapillus), LeConte's thrashers (Toxostoma lecontei), loggerhead shrikes (Lanius ludovicianus), sage sparrows (Amphispiza belli), and verdins (Auriparus flaviceps) were more abundant inside than outside the DTNA. Nesting activity was also more frequent inside. Total abundance and species richness of lizards and individual abundances of western whiptail lizards (Cnemidophorous tigris) and desert spiny lizards (Sceloporus magister) were higher inside than outside. In contrast, abundance of black-tailed hares was lower inside. Structural diversity of the perennial plant community did not differ due to protection, but cover was 50% higher in protected areas. Black-tailed hares generally prefer areas of low perennial plant cover, which may explain why they were more abundant outside than inside the DTNA. Habitat structure may not affect bird and lizard communities as much as availability of food at this desert site, and the greater abundance and species richness of vertebrates inside than outside the DTNA may correlate with abundances of seeds and invertebrate prey.  相似文献   

12.
The High Plains Aquifer (HPA) underlies parts of eight states and 208 counties in the central area of the United States (U.S.). This region produces more than 9% of U.S. crops sales and relies on the aquifer for irrigation. However, these withdrawals have diminished the stock of water in the aquifer. In this paper, we investigate the aggregate county‐level effect on the HPA of groundwater withdrawal for irrigation, of climate variables, and of energy price changes. We merge economic theory and hydrological characteristics to jointly estimate equations describing irrigation behavior and a generalized water balance equation for the HPA. Our simple water balance model predicts, at average values for irrigation and precipitation, an HPA‐wide average decrease in the groundwater table of 0.47 feet per year, compared to 0.48 feet per year observed on average across the HPA during this 1985–2005 period. The observed distribution and predicted change across counties is in the (?3.22, 1.59) and (?2.24, 0.60) feet per year range, respectively. The estimated impact of irrigation is to decrease the water table by an average of 1.24 feet per year, whereas rainfall recharges the level by an average of 0.76 feet per year. Relative to the past several decades, if groundwater use is unconstrained, groundwater depletion would increase 50% in a scenario where precipitation falls by 25% and the number of degree days above 36°C doubles. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

13.
ABSTRACT: Most of the precipitation that falls is unused because it never reaches a stream or recharges an underground supply. This storm water evaporates and is transpired and consumed by plants. Described below are pertinent legal principles and the concept for a small-scale system to capture and store some of this “lost” storm water from the subflow of small gravelly washes that are not part of or connected with a stream system. The subsurface flow is interrupted by an elastomer faced earthen barrier (dam) and stored in a gravel bed. Both the barrier and the gravel storage bed are situated below the surface of the wash bed. If the gravel bed is not underlain by a natural substratum that is relatively impervious, it is either placed on a liner of suitable compacted clay or is underlain with an elastomeric membrane to limit the downward infiltration and loss of the stored water. A system may be used to capture and store sub-flow after surface flow has ceased and during periods of drought; to supply household and irrigation water; to exercise Winters Doctrine rights; and to replace small dams and surface impoundments by underground storage of the captured water to ensure a more reliable and sanitary supply for livestock and wildlife. A system is most effective in desert regions where (or when) both stream and ground water are unavailable; where rainfall is infrequent, but in storms resulting in rapid runoff; and where land surface topography and morphology coincide to form sites that permit the productive use of a system. A system should not be installed without sound legal and hydrological advice. Careful engineering is essential to the safe and proper design of a system, especially its subsurface barrier.  相似文献   

14.
ABSTRACT: A study was conducted to evaluate the existing furrow irrigation system of Karun Agro Industry, a sugar cane plant in Daimcheh, Iran. Although the system is only eight years old, design and operational problems have reduced its efficiency by 50 percent. Lack of skilled irrigation workers, inadequate control of irrigation water, and problems with night irrigation have resulted in substantial revenue losses for the plant. This study evaluates the existing irrigation system, and recommends modifications and improvements to increase its efficiency. Final recommendations include the use of various irrigation methods, improvements to the existing system, and cancellation of night irrigation.  相似文献   

15.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

16.
ABSTRACT: A test of the suitability of subsurface drip irrigation (SDI) for alfalfa (Medicago sativa L) compared to a sprinkler, was conducted on a Kansas producer's field where the soil is loam. The treatments included drip tape spacing of 60, 40, and 30 inches placed at depths of 18 and 12 inches. A nearby plot irrigated by a center pivot sprinkler was seeded to alfalfa and used for comparison. Seedling emergence and yield were adversely affected at 60 inch spacing, while the depth of placement of drip tapes (18 and 12 inches) showed no effect on yield. The site served for education and allowed comparison between SDI tape spacing and center pivot system.  相似文献   

17.
ABSTRACT: A palustrine water tupelo (Nyssa aquatica L.)-baldcy-press (Taxodium distichum (L.) Rich.) swamp in southwestern Alabama was subjected to three types of disturbance, including helicopter logging, rubber-tired skidder logging simulation, and helicopter logging followed by an herbicide application. An adjacent undisturbed stand served as a control area. Post-harvest collection of sedimentation data revealed that the herbaceous and woody vegetation regrowth within the helicopter and skidded clearcut areas trapped more sediments than did the control or herbicide treatment areas. Clearcutting, followed by plant regrowth, improved the wet-land's capacity to remove sediments from overbank flow flood waters.  相似文献   

18.
Since 1972, 10 benthic surveys and 9 static fish bioassays have been conducted to assess the impact of AVTEX Fibers, Inc. effluent on the lower South Fork of the Shenandoah River. AVTEX (formerly FMC Corp.) is a rayon and polyester fibers plant located in Front Royal, Virginia. Benthic samples were taken at four stations, one above and three below the plant discharges. Single surveys in 1972 and 1973 indicated a severe impact on the benthic community along the right side of the river, below the plant, as a result of the channelized effluent. Diversity values (¯d) were low (0–2.42) and numbers of taxa and organisms were reduced. A fish bioassay in 1973 indicated the effluent to be acutely toxic at the 34.5% level (mixture of effluent and river water). In early 1974, FMC Corp. constructed an activated sludge treatment system to reduce BOD and supplement the neutralization and chemical precipitation (zinc hydroxide and liquid-solid separation) facilities that had been used to treat waste waters since 1948. After the new equipment was placed in operation, the previously stressed area became more stable. In 1975 and 1976 the stressed area exhibited greater ¯d values (1.19–3.39) and an increased number of taxa and organisms. Bioassays showed the effluent to be acutely toxic to fish only once since 1973. The major improvements in the effluent were a 70% reduction in BOD5 and a 60% reduction in the amount of zinc entering the river. Community conditions in 1977 indicated a partial remission of improvement, probably due to drought conditions.The rehabilitation of damaged ecosystems is a process important to all biologists. An important factor in encouraging industry to participate in this activity is evidence that improved waste treatment will often have demonstrable biological benefits rather soon. As data accumulate on the recovery process it may be possible to predict the degree of rehabilitation and time required more precisely.  相似文献   

19.
Human communities often are an inadvertent source of food, water, and other resources to native species of wildlife. Because these resources are more stable and predictable than those in a natural environment, animals that subsist on them are able to increase in numbers and expand their range, much to the detriment of their competitors and species they prey upon. In the Mojave Desert, common ravens (Corvus corax) have benefited from human-provided resources to increase in population size precipitously in recent years. This trend has caused concern because ravens prey on juvenile desert tortoises (Gopherus agassizii), a federally threatened species. In this paper, I discuss management strategies to reduce raven predation on desert tortoises. The recommendations fall into three categories: (1) managing raven populations by reducing access to anthropogenic resources; (2) removing offending ravens or other birds in specially targeted tortoise management zones; and (3) continuing research on raven ecology, raven behavior, and methods of reducing raven predation on tortoises. I also recommend approaching the problem within an adaptive management framework: management efforts should first be employed as scientific experiments—with replicates and controls—to yield an unbiased assessment of their effectiveness. Furthermore, these strategies should be implemented in concert with actions that reduce other causes of desert tortoise mortality to aid the long-term recovery of their populations. Overall, the approaches outlined in this paper are widely applicable to the management of subsidized predators, particularly where they present a threat to a declining species of prey.  相似文献   

20.
The present paper examines the nature and dimensions of environmental transformation induced by canal irrigation in the arid region of India. The case study pertains to the Indira Gandhi Canal comand area in Rajasthan where the density and area of vegetation cover have increased due to afforestation, and the cultivated area has expanded due to irrigation. Consequently, there has been a perceptible improvement in the structure and fertility of sandy soils, but it would require a herculean effort on the part of the canal authority and local people to reduce soil erosion and siltation in the lower parts of stage I and the entire command area of stage II. Moreover, the water table has been rising rapidly throughout the command area of stage I. About half of the command area and adjoining Ghaggar basin in Ganganagar District will be facing the danger of waterlogging by the turn of the century. The incidence of irrigation-induced alkalization is higher in the lower parts of stage I. Soil alkalinity has appeared within five years of the introduction of irrigation in the interdunal basins and is manifested as a strong salt regime or calcareous pans near surface. This calls for immediate reclamation of the affected area and prevention of its expansion by altering the strategy of irrigation development, by changing cropping patterns, and by providing soil drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号