首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mine tailings are moderately to severely impacted sites that lack normal plant cover, soil structure and development, and the associated microbial community. In arid and semiarid environments, tailings and their associated contaminants are prone to eolian dispersion and water erosion, thus becoming sources of metal contamination. One approach to minimize or eliminate these processes is to establish a permanent vegetation cover on tailings piles. Here we report a revegetation trial conducted at a moderately impacted mine tailings site in southern Arizona. A salt and drought-tolerant plant, four-wing saltbush [Atriplex canescens (Pursh) Nutt.], was chosen for the trial. A series of 3 by 3 m plots were established in quadruplicate on the test site to evaluate growth of four-wing saltbush transplants alone or with compost addition. Results show that >80% of the transplanted saltbush survived after 1.5 yr in both treatments. Enumeration of heterotrophs and community structure analysis were conducted to monitor bacterial community changes during plant establishment as an indicator of plant and soil health. The bacterial community was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rDNA PCR gene products from tailings samples taken beneath transplant canopies. Significant differences in heterotrophic counts and community composition were observed between the two treatments and unplanted controls throughout the trial, but treatment effects were not observed. The results suggest that compost is not necessary for plant establishment at this site and that plants, rather than added compost, is the primary factor enhancing bacterial heterotrophic counts and affecting community composition.  相似文献   

2.
ABSTRACT: Soil infiltration capacity and interrill erosion are significantly influenced by soil frost on western rangelands which are characterized by cold winters and numerous freeze-thaw cycles. However, little is known about the variable influence of this phenomenon. Infiltration and interrill erosion were measured within a sagebrush-grass plant community during the winter, spring, and summer of 1989. Significant spatial and temporal differences in infiltration capacity and interrill erosion were found for shrub coppice dune and dune interspace soils. Infiltration was generally higher for coppice dune soils compared to interspace soils throughout the year. Infiltration capacity for both soils was lowest early in the year when the soil was frozen or saturated, then increased as the soil dried in the spring and summer. Interrill erosion was consistently lower for coppice dune soils compared to interspace soils. Erosion from interspace soils was greatest during a 19-day period in late winter characterized by diurnal freeze-thaw cycles, saturated surface soil conditions, and soil slaking.  相似文献   

3.
Capped waste sites often are vegetated with commercial turf grasses to increase evapotranspiration and prevent erosion and possible exposure of the barrier. Fertilizer, frequent watering, and mowing may be required to establish the turf grass and prevent invasion by trees and shrubs. Oldfield vegetation of grasses and forbs is a possible sustainable alternative to turf grass communities. To determine if oldfield vegetation can establish on caps, we (1) compared establishment of a dominant oldfield grass and a commercial turf grass under different combinations of new closure cap management: spring or summer planting and presence or absence of amendments to alleviate drought (watering, mulch) or increase soil fertility (fertilizer, lime, a nitrogen-fixing legume); (2) surveyed existing caps to determine if oldfield species establish naturally; and (3) performed a greenhouse experiment to compare growth of two native grasses under low and amended (added water, soil nutrients) conditions. Both the commercial grass and oldfield species established under new cap conditions; fertilizer, water, and mulch improved vegetation establishment in spring or summer, but legumes decreased grass cover. In the greenhouse, both native grasses grew best with amendments; however, substantial stem and root length were obtained with no fertilizer and only once-weekly watering. Existing vegetated caps supported planted grasses and naturally established oldfield species. Overall, the results indicate native grasses can establish on new caps and oldfields can serve as a management model; further work is needed to determine the management strategy to maintain herbaceous vegetation and slow woody species invasion.  相似文献   

4.
In spite of the advantages of Vetiver grass in light of environmental aspects, this plant is not used in the Mediterranean region. The objectives of the present study were: (i) to elucidate growth parameters and establishment of Vetiver under Mediterranean conditions suitable for its various environmental applications; and (ii) to develop management practices for growing vetiver under Mediterranean conditions. In greenhouse experiments conducted under controlled conditions it was found that, in general, increasing the minimum/maximum temperatures to 21-29 degrees C significantly increased plant height. In the Mediterranean region, this range of air temperatures is obtained mainly during the summer, from June to September. For air temperatures up to 15-23 degrees C the effect of day length on plant height was insignificant, whereas in air temperature >15-23 degrees C, the plant heights under long day conditions were significantly higher than under short day. The number of sprouts per plant increased exponentially with increasing air temperature, and was not significantly affected by the day length at any air temperature range. In open fields, the heights of irrigated vetiver plants were significantly higher than those of rain-fed plants. It was concluded that, once they were established, vetiver plants could survive the dry summer of the Mediterranean region under rain-fed conditions, but they would be shorter than under irrigation. Cutting or burning of the plant foliage during the spring did not improve the survival of vetiver during the dry summer. In order to obtain fast growth of vetiver and to increase the possibility of its using the rainwater, the plants should be planted in the winter, during February and March. However, under this regime, the vetiver plant cannot be used as a soil stabilizer during the first winter, because the plant is still small. In contrast, under irrigation it is advantageous to plant vetiver at the beginning of the summer; the plant then has sufficient time to grow and develop before the beginning of the winter, so that its effect as a soil stabilizer in the following wet winter could be maximal. It was found that vetiver could grow in a wide range of substrates, such as: sandy soil, loamy sand, clay soil, crushed limestone, sandy clay loam, and tuff/peat mixture.  相似文献   

5.
The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The adverse effect of salt accumulation on the soil environment should be taken into account when using tamarisk as restoration plant species, especially in saline meadow and controlling of tamarisk density should be considered when undertaking re-vegetation projects in the arid desert oasis regions.  相似文献   

6.
In the semiarid Horqin sandy land of northern China, establishment of artificial sand-fixing shrubs on desertified sandy lands is an effective measure to control desertification and improve the regional environment. Caragana microphylla Lam. and Artemisia halodendron Turcz. ex Bess. are two of the dominant native shrub species, which are adapted well to windy and sandy environments, and thus, are widely used in revegetation programs to control desertification in Horqin region. To assess the effects of artificially planting these two shrub species on restoration of desertified sandy land, soil properties and plant colonization were measured 6 years after planting shrubs on shifting sand dunes. Soil samples were taken from two depths (0–5 cm and 5–20 cm) under the shrub canopy, in the mid-row location (alley) between shrub belts, and from nonvegetated shifting sand dune (as a control). Soil fine fractions, soil water holding capacity, soil organic C and total N have significantly increased, and pH and bulk density have declined at the 0–5-cm topsoil in both C. microphylla and A. halodendron. At the 5–20 cm subsurface soil, changes in soil properties are not significant, with exception of bulk density and organic C concentration under the canopy of A. halodendron and total N concentration under the canopy of C. microphylla. Soil amelioration processes are initiated under the shrub canopies, as higher C and N concentrations were found under the canopies compared with alleys. At the same time, the establishment of shrubs facilitates the colonization and development of herbaceous species. A. halodendron proved to have better effects in fixing the sand surface, improving soil properties, and restoring plant species in comparison to C. microphylla.  相似文献   

7.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

8.
The main aim of this study was to determine how the application of a mulch cover (a mixture of household biocompost and woodchips) onto heavy metal-polluted forest soil affects (i) long-term survival and growth of planted dwarf shrubs and tree seedlings and (ii) natural revegetation. Native woody plants (Pinus sylvestris, Betula pubescens, Empetrum nigrum, and Arctostaphylos uva-ursi) were planted in mulch pockets on mulch-covered and uncovered plots in summer 1996 in a highly polluted Scots pine stand in southwest Finland. Spreading a mulch layer on the soil surface was essential for the recolonization of natural vegetation and increased dwarf shrub survival, partly through protection against drought. Despite initial mortality, transplant establishment was relatively successful during the following 10 yr. Tree species had higher survival rates, but the dwarf shrubs covered a larger area of the soil surface during the experiment. Especially E. nigrum and P. sylvestris proved to be suitable for revegetating heavy metal-polluted and degraded forests. Natural recolonization of pioneer species (e.g., Epilobium angustifolium, Taraxacum coll., and grasses) and tree seedlings (P. sylvestris, Betula sp., and Salix sp.) was strongly enhanced on the mulched plots, whereas there was no natural vegetation on the untreated plots. These results indicate that a heavy metal-polluted site can be ecologically remediated without having to remove the soil. Household compost and woodchips are low-cost mulching materials that are suitable for restoring heavy metal-polluted soil.  相似文献   

9.
Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.  相似文献   

10.
Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (~53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.  相似文献   

11.
We try to elucidate which environmental and soil factors control nitrogen uptake efficiency in citrus. Effects of residence time and nitrogen (N) concentration (three 500-mL applications of 7 mg N L(-1), representative of reclaimed water used for citrus irrigation in central Florida, or one 150-mL application of 70 mg N L(-1)) on nitrogen uptake efficiency (NUE) of young citrus seedlings were studied. Increasing residence times from 2 to 8 h increased NUE from 36 to 82% and from 17 to 34% for high and low application frequencies, respectively. We developed a model to predict N uptake based on root density, N concentration, and soil temperature (Ts). Assuming a base temperature (Tb) of 10 degrees C, N uptake temperature sum (UTS) = sigma(Ts - Tb)/24 (degrees CdN, degree day units of N uptake). To eliminate the risk of N leaching for young seedlings, minimum uptake periods of 5 and 16 degrees CdN were required at initial soil N concentrations of 0.9 and 2.5 mg N L(-1), respectively. After correcting for differences in root length, this information was then used to predict the effect of irrigation practices on N uptake from reclaimed water for mature trees. Applying 2500 mm yr(-1) vs. 400 mm yr(-1) reclaimed water reduced the NUE of N in this water from 100 to 63% during the summer and from 100 to 28% during the winter. Reductions in NUE at higher irrigation rates appeared to be related to N displacement below the root zone prior to complete N uptake.  相似文献   

12.
Surface covers are used to isolate contaminants in hazardous and low-level radioactive sites for time frames ranging from hundreds of years to millennia or more. In the absence of data for such durations, the long-term performance of surface barriers can only be represented with short-term tests or inferred from analogs and modeling. This paper provides evidence of field performance of soil covers for periods up to 17 yr. The results of lysimeter studies from a semiarid site in Washington State show that a cover design known as the Hanford Barrier, which consists of 1.5 m of silt loam above a sand-gravel capillary break, can nearly eliminate drainage. The results were similar if plants were present or not, demonstrating the robustness of the design. Furthermore, reducing the silt loam thickness to 1.0 m (as might occur via erosion), with or without plants, did not lead to drainage. When irrigated to mimic 3x average precipitation conditions, the vegetated Hanford Barrier continued to prevent drainage. Overall, the results showed no loss in performance during the 17 yr of testing. Only when plants were eliminated completely from the 3x precipitation test did drainage occur (rates ranged from 6 to 16 mm yr(-1)). In a separate test, replacing the top 0.2 m of silt loam with dune sand and reducing the plant cover did not lead immediately to the onset of drainage, but soil matric heads within the silt loam noticeably increased. This observation suggests that dune sand migration onto a surface cover has the potential to reduce a cover's ability to minimize deep drainage.  相似文献   

13.
N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.  相似文献   

14.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

15.
Many regions of southern California's coastal sage scrub (CSS) are rapidly declining as exotic annual plants replace native shrubs. During this conversion, the subsurface hydrology of the semiarid hillslopes that support CSS may be altered. This could chronically suppress the ability of native shrubland to revegetate the landscape since ecosystem processes of nutrient availability and of seedling establishment rely on spatial patterns of available soil water. In this work, soil water and nutrient N regimes were compared over a 2-yr period between a southern California site where CSS has declined (approximately 5% shrub cover) with high additions of anthropogenic N, and one where CSS remains dominant (over 50% shrub cover) with predominantly background atmospheric additions of N. These two sites have similar climate, bedrock lithology, soils, and topography, and had the same vegetation type (Riversidean CSS) 30 years ago. We found that the depth and rate of rainwater percolation into wildland hillslope soils in response to early-season storm events has been greatly reduced after loss of CSS shrubs and vegetation type conversion to invasive grassland. With decreased rainwater redistribution to soil depths of 100 to 150 cm, the predominant zone of soil water has become the upper 25 cm. This shift exacerbates vegetation type conversion by (i) concentrating smog-produced nitrogenous (N) chemicals in the uppermost soil, where they become readily available, along with high soil water, to shallow-rooted exotic grasses early in the growing season and (ii) depriving adult and juvenile shrubs of deeper regolith water.  相似文献   

16.
选择柴达木盆地诺木洪农场3种类型农田进行20 cm表层土壤砷(As)含量检测。第1种为新开垦原生地,第2种为20年耕种地,第3种为50年耕种地,检测As含量分别为16.29、14.90、14.04 mg·kg^-1。3种土壤As含量均达到无公害食品标准(25 mg· kg^-1)和绿色食品标准(20 mg·kg^-1)。多年耕种并没有造成农田表层土壤As积累。农田灌溉用河水中未检出As。生产中使用的22种农药、肥料均检测到As,其中15种杀虫剂、杀真菌剂、除草剂、植物激素等,每年输入土壤As 4513.59 mg·hm^-2;7种肥料每年输入土壤As 258015.24 mg·hm^-2。施肥是土壤中As输入的重要来源,最主要的输入源是磷酸二铵,占到50%;其次为复合肥、鸡粪和有机肥。每年随作物输出As总量为4380 mg·hm^-2。模拟田间灌溉,进行土壤柱淋漓试验,农田20 cm表层土壤每年随灌溉淋漓输出As为245230.65 mg·hm^-2,这与随着肥料、农药输入量几乎相等。表层土壤As处在一个输入、输出相对稳定的动态平衡状态。从土壤中输出的As,随灌溉水输入到水系统中,继而造成水系统As的积累,最终将影响到地区农业的可持续发展。  相似文献   

17.
Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability.  相似文献   

18.
We examined constraints on soil CO2 respiration in natural oak woodlands, and adjacent vineyards that were converted approximately 30 yr ago from oak woodlands, in the Oakville Region of Napa Valley, California. All sites were located on the same soil type, a Bale (variant) gravelly loam (fine-loamy, mixed, superactive, thermic Cumulic Ultic Haploxeroll) and dominated by C3 vegetation. Seasonal soil CO2 efflux was greatest at the oak woodland sites, although during the summer drought the rates of soil CO2 efflux measured from oak sites were generally similar to those measured from the vineyards. Soil profile CO2 concentrations at the oak woodland sites were lower below 15 cm despite higher CO2 efflux rates. Soil gas diffusion coefficients for oak sites were larger than for vineyard sites, and this indicated that the apparent discrepancy in soil profile carbon dioxide concentration ([CO2]) may be caused by a diffusion limitation. Soil profile [CO2] and delta13C values showed substantial temporal changes over the course of a year. Vineyard soil CO2 was more depleted in 13CO2 below 25 cm in the soil profile during the active growing season as indicated by more negative delta13C ratios. This result indicated that different C sources were being oxidized in vineyard soils. Annual C losses were less from vineyard soils (7.02 +/- 0.58 Mg C ha(-1) yr(-1)) as compared to oak soils (15.67 +/- 1.44 Mg C ha(-1) yr(-1)), and both were comparable to losses reported in previous investigations.  相似文献   

19.
Dunes that are protected because of their very rich and diverse plant communities are often exposed to excessive visitor pressure. The effects of trampling on the habitat must be known from a conservation viewpoint but also are important for management. To determine the response of plant assemblages to trampling by people, an experimental study was conducted on the state-owned dunes at Quiberon (Brittany, France). Indices of resistance and resilience were used to compare three typical plant communities belonging to the various landscape units: mobile dune, semifixed dune, and fixed dune. The strong contrasts between communities belonging to different successional stages reflect their ecological functioning. The mobile dune and semifixed dune with their low resistance contrasted with the fixed dune. Only the vegetation cover of the semifixed dune benefited from long-term trampling and had a very high resilience (134%). This response could be explained by a good balance of two opposite factors: soil compaction increasing soil stability and moisture content, and vegetation destruction. Because of their low resilience, trampling seems to be harmful for fixed dunes in the long term. The tourist pressure seems easier to integrate in to the mobile dunes and the semifixed dunes if periods of recovery are included in the management.  相似文献   

20.
Maximizing utilization of effluent nutrients by forage grasses requires a better understanding of irrigation rate and timing effects. This study was conducted in 1998 and 1999 on a Vaiden silty clay (very-fine, smectitic, thermic Aquic Dystrudert) soil to determine the effects of swine lagoon effluent irrigation rate and timing on bermudagrass [Cynodon dactylon (L.) Pers.] growth, nitrogen (N) and phosphorus (P) recovery, and postseason soil profile NO3(-)-N. Treatments consisted of swine effluent irrigation at the rates of 0, 5, 10, 15, and 20 ha-cm. Two additional treatments included 2.5 ha-cm applied on 1 September and 1 October in addition to a base summer rate of 10 ha-cm. In both years for early to mid-season irrigation, bermudagrass dry matter yield quadratically increased with increasing swine effluent irrigation rates. Averaged across years, effluent irrigation in October resulted in 30% less dry matter than in September. For late-season irrigation, apparent N recovery averaged 59% less and P recovery averaged 46% less with a delay in irrigation from 1 September to 1 October. The greatest quantity of soil NO3(-)-N was associated with both the greatest effluent rate and October irrigation treatments. Minimal yield benefit was obtained when effluent was applied at rates greater than 10 ha-cm during the summer months. Late-season irrigation, especially after 1 October for areas with similar climatic conditions, should be avoided to maximize synchronization of nutrient availability with maximum growth rates to minimize potential offsite movement of residual soil N and P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号