首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid increases in the swine (Sus scrofa domestica) population in the 1990s and associated potential for nitrate N pollution of surface waters led the state of North Carolina to adopt stringent waste management regulations in 1993. Our objectives were to characterize (i) nitrate N movement from waste application fields (WAFs) in shallow ground water, and (ii) soil, hydrologic, and biological factors influencing the amount of nitrate N in the adjacent stream. A ground water monitoring study was conducted for 36 mo on a swine farm managed under new regulations. Water table contours and lack of vertical gradients indicated horizontal flow over most of the site. Nitrate N concentrations in water from shallow wells in WAFs averaged 30 +/- 19 mg L(-1) and delta15N ratios for nitrate N were between +20 and +25 per mil. Nitrate N concentration decreased from field-edge to streamside wells by 22 to 99%. Measurement of delta18O and delta15N enrichment of nitrate in ground water throughout the WAF-riparian system indicated that denitrification has not caused significant 15N enrichment of nitrate. Over a 24-mo period, delta15N ratios for nitrate N in the stream approached delta15N ratios for nitrate N in ground water beneath WAFs indicating delivery of some waste-derived nitrate N to the stream in shallow ground water. Nitrate N concentrations in the stream were relatively low, averaging 1 mg L(-1). Dilution of high nitrate N water in shallow horizontal flow paths with low nitrate N water from deeper horizontal flow paths at or near the stream, some denitrification as ground water discharges through the stream bottom, and some denitrification in riparian zone contributed to this low nitrate N concentration.  相似文献   

2.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

3.
Riparian buffers are used throughout the world for the protection of water bodies from nonpoint-source nitrogen pollution. Few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide (N2O). The objectives of this research were to ascertain the level of potential N2O production in riparian buffers and identify controlling factors for N2O accumulations within riparian soils of an agricultural watershed in the southeastern Coastal Plain of the USA. Soil samples were obtained from ten sites (site types) with different agronomic management and landscape position. Denitrification enzyme activity (DEA) was measured by the acetylene inhibition method. Nitrous oxide accumulations were measured after incubation with and without acetylene (baseline N2O production). The mean DEA (with acetylene) was 59 microg N2O-N kg(-1) soil h(-1) for all soil samples from the watershed. If no acetylene was added to block conversion of N2O to N2, only 15 microg N2O-N kg(-1) soil h(-1) were accumulated. Half of the samples accumulated no N2O. The highest level of denitrification was found in the soil surface layers and in buffers impacted by either livestock waste or nitrogen from legume production. Nitrous oxide accumulations (with acetylene inhibition) were correlated to soil nitrogen (r2=0.59). Without acetylene inhibition, correlations with soil and site characteristics were lower. Nitrous oxide accumulations were found to be essentially zero, if the soil C/N ratios>25. Soil C/N ratios may be an easily measured and widely applicable parameter for identification of potential hot spots of N2O productions from riparian buffers.  相似文献   

4.
Speiran, Gary K., 2010. Effects of Groundwater-Flow Paths on Nitrate Concentrations Across Two Riparian Forest Corridors. Journal of the American Water Resources Association (JAWRA) 46(2):246-260. DOI: 10.1111/j.1752-1688.2010.00427.x Abstract: Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/l beneath fields to 2 mg/l beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/l to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.  相似文献   

5.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

6.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

7.
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.  相似文献   

8.
Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R 2 = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.  相似文献   

9.
We determined the water quality effect of a restored forested riparian wetland adjacent to a manure application area and a heavily fertilized pasture in the Georgia Coastal Plain. The buffer system was managed based on USDA recommendations and averaged 38 m in width. Water quality and hydrology data were collected from 1991-1999. A nitrate plume in shallow ground water with concentrations exceeding 10 mg NO3-N L(-1) moved into the restored forested riparian wetland. Along most of the plume front, concentrations were less than 4 mg NO3-N L(-1) within 25 m. Two preferential flow paths associated with past hydrologic modifications to the site allowed the nitrate plume to progress further into the restored forested riparian wetland. Surface runoff total N, dissolved reactive phosphorus (DRP), and total P concentrations averaged 8.63 mg N L(-1), 1.37 mg P L(-1), and 1.48 mg P L(-1), respectively, at the field edge and were reduced to 4.18 mg N L(-1), 0.31 mg P L(-1), and 0.36 mg P L(-1), respectively, at the restored forested riparian wetland outlet. Water and nutrient mass balance showed that retention and removal rates for nitrogen species ranged from a high of 78% for nitrate to a low of 52% for ammonium. Retention rates for both DRP and total P were 66%. Most of the N retention and removal was accounted for by denitrification. Mean annual concentrations of total N and total P leaving the restored forested riparian wetland were 1.98 mg N L(-1) and 0.24 mg P L(-1), respectively.  相似文献   

10.
A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model 1 was constructed by evaluating 32 variables and selecting four primary predictor variables (delta 15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A delta 15N value of nitrate plus potassium > 18.2 indicated animal sources; a value < 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio > 575 indicated inorganic fertilizer on agricultural crops; a ratio < 575 indicated nitrate from golf courses. A sodium to potassium ratio > 3.2 indicated septic-system wastes; a ratio < 3.2 indicated spray or poultry wastes. A value for zinc > 2.8 indicated spray wastes from hog lagoons; a value < 2.8 indicated poultry wastes. Model 2 was devised by using all variables except delta 15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.  相似文献   

11.
Movement of liquor constituents from animal-waste lagoons has the potential to degrade ground water quality. The depth of movement and concentrations of lagoon-liquor constituents in the soil underlying three cattle (Bos taurus)-waste retention lagoons and one swine (Sus scrofa)-waste lagoon were determined. Samples were taken by using a direct-push coring machine, dissected by depth, and analyzed for total N, organic C, CaCO3, pH, cation exchange capacity (CEC), texture, and extractable NO3, NH(4), P, Cl, Ca, Mg, K, and Na. Ammonium N concentrations were greatest in the upper 0.5 m of soil under all four lagoons with concentrations ranging from 94 to 1139 mg kg(-1). Organic N was determined to make up between 39 and 74% of the total N beneath all lagoons. The swine lagoon had 2.4 kg N m(-2) in the underlying soil whereas the cattle lagoon with highest quantity of N had 1.2 kg N m(-2) in the underlying soil. Although N concentrations decreased with depth, N was greater than expected background levels at the bottom of some cores, indicating that the sampling efforts did not reach the bottom of the N plume. Nitrate N concentrations were generally less than 5 mg kg(-1) immediately below the lagoon floor. In the uppermost 0.5 m of soil underlying the swine and three cattle lagoons, NH4+ occupied 44% and between 1 and 22% of the soil cation exchange sites, respectively. The depth of movement of N under these lagoons, as much as 4 m, may pose remediation difficulties at lagoon closure.  相似文献   

12.
To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.  相似文献   

13.
ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site‐specific studies of riparian ground water nitrate removal to spatial data can help target high‐value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate‐enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate‐N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate‐enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases.  相似文献   

14.
Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.  相似文献   

15.
Abstract: Being able to identify riparian sites that function better for nitrate removal from groundwater is critical to using efficiently the riparian zones for water quality management. For this purpose, managers need a method that is quick, inexpensive, and accurate enough to enable effective management decisions. This study assesses the precision and accuracy of a simple method using three ground water wells and one measurement date for determining nitrate removal characteristics of riparian buffer zones. The method is a scaled‐down version of a complex field research method that consists of a large network of wells and piezometers monitored monthly for over two years. Results using the simplified method were compared to those from the reference research method on a date‐by‐date basis on eight sites covering a wide range of hydrogeomorphic settings. The accuracy of the three‐well, 1 day measurement method was relatively good for assessing nitrate concentration depletion across riparian zones, but poor for assessing the distance necessary to achieve a 90% nitrate removal and for estimating water and nitrate fluxes compared to the reference method. The simplified three‐well method provides relatively better estimates of water and nitrate fluxes on sites where ground‐water flow is parallel to the water table through homogeneous aquifer material, but such conditions may not be geographically widespread. Despite limited overall accuracy, some parameters that are estimated using the simplified method may be useful to water resource managers. Nitrate depletion information may be used to assess the adequacy of existing buffers to achieve nitrate concentration goals for runoff. Estimates of field nitrate runoff and buffer removal fluxes may be adequate for prioritizing management toward sites where riparian buffers are likely to have greater impact on stream water quality.  相似文献   

16.
The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.  相似文献   

17.
Increased concern about potential losses of phosphorus (P) from agricultural fields receiving animal waste has resulted in the implementation of new state and federal regulations related to nutrient management. In response to strengthened nutrient management standards that require consideration of P, North Carolina has developed a site-specific P indexing system called the Phosphorus Loss Assessment Tool (PLAT) to predict relative amounts of potential P loss from agricultural fields. The purpose of this study was to apply the PLAT index on farms throughout North Carolina in an attempt to predict the percentage and types of farms that will be forced to change management practices due to implementation of new regulations. Sites from all 100 counties were sampled, with the number of samples taken from each county depending on the proportion of the state's agricultural land that occurs in that county. Results showed that approximately 8% of producers in the state will be required to apply animal waste or inorganic fertilizer on a P rather than nitrogen basis, with the percentage increasing for farmers who apply animal waste (approximately 27%). The PLAT index predicted the greatest amounts of P loss from sites in the Coastal Plain region of North Carolina and from sites receiving poultry waste. Loss of dissolved P through surface runoff tended to be greater than other loss pathways and presents an area of concern as no best management practices (BMPs) currently exist for the reduction of in-field dissolved P. The PLAT index predicted the areas in the state that are known to be disproportionately vulnerable to P loss due to histories of high P applications, high densities of animal units, or soil type and landscapes that are most susceptible to P loss.  相似文献   

18.
Abstract: Groundwater transport often complicates understanding of surface‐water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late‐winter or spring base‐flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base‐flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base‐flow flux of alachlor and metolachlor is <3% of the total base‐flow flux of those compounds plus degradates. Base‐flow flux of nitrate and herbicides as a percentage of applications is typically highest in well‐drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base‐flow nitrate flux represents 70% of total nitrogen flux in headwater streams.  相似文献   

19.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   

20.
Riparian zones are recognized as landscape features that buffer streams from pollutants, particularly nitrogen. The objectives of this experiment were to (i) assess denitrification activity within a riparian zone and (ii) determine the influence of physical, chemical, and landscape features on denitrification. This experiment was conducted from 1994 to 1997 in North Carolina on a riparian zone contiguous to a spray field that was heavily loaded with swine lagoon wastewater. Denitrification enzyme activity (DEA) was measured on soils collected from (i) the soil surface, (ii) midway between the soil surface and water table, and (iii) above the water table. The DEA ranged from 3 to 1660 microg N(2)O-N kg(-1) soil h(-1). The DEA was highest next to the stream and lowest next to the spray field. Nitrate was found to be the limiting factor for denitrification. The DEA generally decreased with soil depth; means for the surface, middle, and bottom depths were 147, 83, and 67 microg N(2)O-N kg(-1) soil h(-1), respectively. These DEA values are higher than those reported for riparian zones adjoining cropland of the southeastern United States, but are lower than those reported for a constructed wetland used for treatment of swine wastewater. Regression analysis indicated that soil total nitrogen was the highest single factor correlated to DEA (r(2) = 0.65). The inclusion of water table depth, soil depth, and distance from the spray field improved the R(2) to 0.86. This riparian zone possessed sufficient soil area with high denitrifying conditions to be a significant factor in the removal of excess nitrogen in the ground water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号