首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A Sensitivity Analysis of Nitrogen Losses from Dairy Farms   总被引:2,自引:0,他引:2  
International attention has focused on agricultural production systems as non-point sources of pollution affecting the quality of streams, estuaries and ground water resources. The objective of the current study was to develop a model of nitrogen management on the dairy farm, and to perform sensitivity analyses in order to determine the relative importance of manipulating herd nutrition, manure management and crop selection in reducing nitrogen (N) losses from the farm. The importance of the method of N input to the farm (purchased feed, legume fixation, inorganic fertilizer, imported manure) was investigated, and the potential to reduce N losses from dairy farms was evaluated. Nitrogen balance equations were derived, and related efficiency coefficients were set to reference values representing common management practices. Total farm N efficiency (animal product N per N input), and N losses per product N were determined for different situations by solving the set of simultaneous equations. Improvements in animal diet and management that increase the conversion of feed N to animal product by 50% would increase total farm N efficiency by 48% and reduce N losses per product by 36 to 40%. In contrast, reducing losses from manure collection, storage and application to improve the percentage of manure N that becomes available in soil by 100% would only improve total farm N efficiency by 13% and reduce total N losses by 14%. Selecting crops and management that can use soil nutrients 50% more efficiently would improve total farm efficiency by up to 59% and reduce N losses by up to 41% depending on the predominant nitrogen sources to the farm. Legume production would reduce N losses per product compared with non-legumes. There was more than a five fold difference in N losses per animal product N between the most extreme scenarios suggesting considerable opportunity to reduce N losses from dairy farms.  相似文献   

2.
Abstract: An integrated economic and environmental modeling system was developed for evaluating agro‐environmental policies and practices implemented on large scales. The modeling system, the Comprehensive Economic and Environmental Optimization Tool‐Macro Modeling System (CEEOT‐MMS), integrates the Farm‐level Economic Model (FEM) and the Agricultural Policy Environmental eXtender (APEX) model, as well as national databases and clustering and aggregation algorithms. Using micro simulations of statistically derived representative farms and subsequent aggregation of farm‐level results, a wide range of agricultural best management practices can be investigated within CEEOT‐MMS. In the present study, CEEOT‐MMS was used to evaluate the economic and water quality impacts of nitrogen (N) and phosphorus (P) based manure application rates when implemented on all animal feeding operations in the State of Texas. Results of the study indicate that edge‐of‐field total P losses can be reduced by about 0.8 kg/ha/year or 14% when manure applications are calibrated to supply all of the recommended crop P requirements from manure total P sources only, when compared to manure applications at the recommended crop N agronomic rate. Corresponding economic impacts are projected to average a US$4,800 annual cost increase per farm. Results are also presented by ecological subregion, farm type, and farm size categories.  相似文献   

3.
Place-based resource management, such as watershed or ecosystem management, is being promoted to replace the media-focused approach for achieving water quality protection. We monitored the agricultural area of a 740-ha watershed to determine the nature and scale of farm material transfers, N and P balances, and farmer decisions that influenced them. Using field data and farmer interviews we found that 3 of 15 farms, emphasizing hog, dairy, or cash crops with poultry production, accounted for more than 80% of the inputs and outputs of N and P for the 362-ha agricultural area (332 ha of managed cropland and animal facilities). Feed for hogs (38% each of total N and P) and manure applied to fields as part of the cash crop and poultry operation (28 and 38% of total N and P, respectively) were the dominant inputs. No crops grown in the watershed were fed to animals in the watershed and more manure nutrients were applied from animals outside than from those in the watershed. A strategic decision by the hog farmer to begin marketing finished hogs changed the material transfers and nutrient balances more than tactical decisions by other farmers in allocating manure to cropland. Since the components of agricultural production were not all interconnected, the fundamental assumption of place-based management programs is not well-suited to this situation. Alternative approaches to managing the effect of agriculture on water quality should consider the organization of agricultural production and the role of strategic decisions in controlling farm nutrient balances.  相似文献   

4.
Manure management plans require knowing the amount of manure produced, collected, and available for land-spreading. Whereas much information is available to calculate manure production, little is known about the types and amounts of manure actually collected on typical dairy farms. This study of 54 representative Wisconsin dairy farms showed significant regional, housing, and herd size differences in collection of manure from lactating cows (Bos taurus), dry cows, and heifers. Significantly (P < 0.05) less manure is collected in the hilly southwest (56% of total annual herd production) than in the undulating south central (72%) or the flat northeast (68%) regions. Collection of lactating cow manure is significantly (P < 0.05) lower from stanchion (66% of total annual production) than free-stall (89%) housing, and significant (P < 0.05) positive relationships were found between the number of lactating cows a farm keeps and the percentage manure collected. Average annual manure N (range of 116-846 kg N ha(-1)) and P (range of 24-158 kg P ha(-1)) loading rates in areas where manure goes uncollected was highest in unvegetated barnyards followed by vegetated and partially vegetated outside areas. Once uncollected manure was accounted for, average annual loading rates on cereal cropland ranged from 128 to 337 kg ha(-1) of manure N, and from 45 to 139 kg ha(-1) of manure P. Compared with adjacent cropland, the accumulation of uncollected manure has vastly increased soil test P, K, and organic matter levels in outside areas. Manure management on Wisconsin dairy farms with small to medium herds might require assistance in managing manure in outside confinement areas to reduce the risk of impairing surface and ground water quality.  相似文献   

5.
With increasing concern over potential polltion from farm wastes, there is a need for rapid and robust methods that can analyze livestock manure nutrient content. The near infrared spectroscopy (NIRS) method was used to determine nutrient content in diverse poultry manure samples (n=91). Various standard preprocessing methods (derivatives, multiplicative scatter correction, Savitsky-Golay smoothing, and standard normal variate) were applied to reduce data systemic noise. In addition, a new preprocessing method known as direct orthogonal signal correction (DOSC) was tested. Calibration models for ammonium nitrogen, total potassium, total nitrogen, and total phosphorus were developed with the partial least squares (PLS) method. The results showed that all the preprocessed data improved prediction results compared with the non-preprocessing method. Compared with the other preprocessing methods, the DOSC method gave the best results. The DOSC method achieved moderately successful prediction for ammonium nitrogen, total nitrogen, and total phosphorus. However, all preprocessing methods did not provide reliable prediction for total potassium. This indicates the DOSC method, especially combined with other preprocessing methods, needs further study to allow a more complete predictive analysis of manure nutrient content.  相似文献   

6.
Phosphorus (P) runoff from manure can lead to eutrophication of surface water and algae growth. This study evaluates the impacts of alternative P reduction practices on dairy farm net returns and on potential P runoff. The P control practices include dairy herd nutrient management, crop nutrient management, and runoff and erosion control. Four farms representative of dairies in the Virginia Shenandoah Valley are simulated including dairies with and without supplementary broiler enterprises and with average and below average land area. A mathematical programming model was developed to predict farm production and net returns and the GLEAMS model was used to predict potential P runoff. The farms are evaluated under four scenarios: Scenario 1, no constraint on P runoff with access to crop nutrient, runoff and erosion control strategies but no access to dairy herd nutrient control strategies; Scenario 2, no constraint on P runoff with access to all crop and dairy herd nutrient control strategies; Scenario 3, constraint on P runoff with access to crop nutrient, runoff and erosion control strategies but no access to dairy herd nutrient control strategies; and Scenario 4, constraint on P runoff with access to all crop and dairy herd nutrient control strategies. Under Scenario 2, the herd nutrient control strategies increase milk output per cow and net returns on both farms and reduce P content of manure and P runoff. Under Scenario 3, limiting P runoff reduces farm returns by 1 and 3% on the average and small farms, respectively. Under Scenario 4, the P runoff constraint is less costly, reducing returns by less than 1% on both farms. Animal nutrient control strategies should be an important part of pollution control policies and programs for livestock intensive watersheds.  相似文献   

7.
As a part of the USEPA's concentrated animal feeding operation (CAFO) final rule, all CAFOs are required to develop and implement a nutrient management plan (NMP). The USEPA's emphasis on better management of nutrients appropriately targets a critical environmental issue associated with animal production. The concentration of animals in livestock feeding operations, often separate from feed grain production, requires importing of substantial quantities of feed nutrients. Due to the inefficiencies of nutrient utilization in livestock production, quantities of nitrogen (N) and phosphorus (P) in manure greater than can be utilized in local crop production often result. With the focus of the USEPA's NMP rules on internal farm manure management planning, nutrient concentrations resulting from animal concentration may not be adequately addressed by compliance with the USEPA rules alone. A review of two mandatory and two voluntary nutrient management strategies is made by comparing whole-farm nutrient balance for a case-study beef cattle feedlot. The results suggest that voluntary BMPs, such as modification to animal feeding program and exporting of manure, can have greater environmental benefits (30-60% reduction in P accumulation for case-study farm) than mandatory NMPs and buffers (5-7% reduction in P accumulation for case-study farm) for a typical beef cattle feedlot. Whole-farm nutrient balance procedures can also be valuable for reviewing the nutrient performance of livestock systems.  相似文献   

8.
ABSTRACT: EPIC, a soil erosion/plant growth simulation model, is used to simulate nitrogen losses for 120 randomly selected and previously surveyed cropland sites. Simulated nitrogen losses occur through volatilization, surface water and soil runoff, subsurface lateral flow, and leaching. Physical and crop management variables explain a moderate but significant proportion of the variation in nitrogen losses. Site slope and tillage have offsetting effects on surface and ground water losses. Nitrogen applications in excess of agronomic recommendations and manure obtained off the farm and applied to the sites are significant contributors to nitrogen losses. Farm characteristics such as production of confined livestock, total manure nitrogen available, and farm income per cropland acre explain a relatively large portion of the variability in manure nitrogen applied to survey sites. The results help to identify farm characteristics that can be used to target nutrient management programs. Simulation modeling provides a useful tool for investigating variables which contribute to agricultural nitrogen losses.  相似文献   

9.
Measurements of dairy manure nutrient availability to crops typically show great variability. Approaches that are more accurate are needed to improve manure management and reduce nutrient loss to the environment. In this study, we compared direct (15N recovery) and indirect (difference method [Diff Meth] and fertilizer equivalence [FE] approach) methods of determining first-year dairy manure N availability or recovery during three cropping seasons. A field experiment was conducted on a Plano silt loam (fine-silty, mixed, superactive, mesic Typic Argiudolls) planted to corn (Zea mays L.). Plots received either manure, fertilizer N, or no N. Microplots receiving 15N-labeled manure were also established each study year. Manure was applied to a new plot each cropping season. Whole-plant N uptake was the best crop parameter to use for FE estimates. Estimates of N availability by relative effectiveness (Rel Eff), which are derived from the Diff Meth, and FE were similar (32 and 41%, respectively) and higher than unlabeled N or 15N recovery measurements because these indices factor in N use efficiency. Measures of the Rel Eff of manure N use were highly affected by control plot N uptake. The FE approach is less influenced by control plots, but it requires the inclusion of several more treatments and use of mathematical functions to describe crop response to N. These limitations are reflected in the wide ranges obtained for N availability estimates (-60 to 148%). Although apparent N recovery by the Diff Meth (14%) or direct measurements of 15N recovery (16%) were close on average, variability tended to be much lower for the 15N method. In addition, the Diff Meth was highly dependent on initial soil conditions. Use of 15N-labeled manure, although more costly and time-consuming, provided more consistent and reliable results.  相似文献   

10.
Quantification of the effects of management programs on water quality is critical to agencies responsible for water resource protection. This research documents reductions in stream water phosphorus (P) loads resulting from agricultural best management practices (BMPs) implemented as part of an effort to control eutrophication of Cannonsville Reservoir, a drinking water supply for New York City. Dairy farms in the upstate New York reservoir basin were the target of BMPs designed to reduce P losses. A paired watershed study was established on one of these farms in 1993 to evaluate changes in P loading attributable to implementation of BMPs that included manure management, rotational grazing, and improved infrastructure. Intensive stream water monitoring provided data to calculate P loads from the 160-ha farm watershed for all runoff events during a two-year pre-treatment period and a four-year post-treatment period. Statistical control for inter-annual climatic variability was provided by matched P loads from a nearby 86-ha forested watershed, and by several event flow variables measured at the farm. A sophisticated multivariate analysis of covariance (ANCOVA) provided estimates of both seasonal and overall load reductions. Statistical power and the minimum detectable treatment effect (MDTE) were also calculated. The results demonstrated overall event load reductions of 43% for total dissolved phosphorus (TDP) and 29% for particulate phosphorus (PP). Changes in farm management practices and physical infrastructure clearly produced decreases in event P losses measurable at the small watershed scale.  相似文献   

11.
The fate of manure nutrients in beef cattle (Bos taurus) feedlots is influenced by handling treatment, yet few data are available in western Canada comparing traditional practices (fresh handling, stockpiling) with newer ones (composting). This study examined the influence of handling treatment (fresh, stockpiled, or composted) on nutrient levels and mass balance estimates of feedlot manure at Lethbridge, Alberta, and Brandon, Manitoba. Total carbon (TC) concentration of compost (161 kg Mg(-1)) was lower (P < 0.001) than stockpiled (248 kg Mg(-1)), which was in turn lower (P < 0.001) than fresh manure (314 kg Mg(-1)). Total nitrogen (TN) concentration was not affected by handling treatment while total phosphorus (TP) concentration increased with composting at Lethbridge. The percent inorganic nitrogen (PIN) was lower (P < 0.01) for compost (5.1%) than both fresh (24.7%) and stockpiled (28.9%) manure. Composting led to higher (P < 0.05) dry matter (DM) losses (39.8%) compared to stockpiling (22.5%) and higher (P < 0.05) total mass (water + DM) losses (65.6 vs. 35.2%). Carbon (C) losses were higher (P < 0.01) with composting (66.9% of initial) than with stockpiling (37.5%), as were nitrogen (N) losses (46.3 vs. 22.5%, P < 0.05). Composting allowed transport of two times as much P as fresh manure and 1.4 times as much P as stockpiled manure (P < 0.001) on an "as is" basis. Our study looked at one aspect of manure management (i.e., handling treatment effects on nutrient concentrations and mass balance estimates) and, as such, should be viewed as one component in the larger context of a life cycle assessment.  相似文献   

12.
A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.  相似文献   

13.
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.  相似文献   

14.
A survey of storm runoff fecal coliform bacteria (FCB) from working farm and ranch pastures is presented in conjunction with a survey of FCB in manure management systems (MMS). The cross-sectional survey of pasture runoff was conducted on 34 pastures on five different dairies over 2 yr under varying conditions of precipitation, slope, manure management, and use of conservation practices such as vegetative filter strips. The MMS cross-sectional survey consisted of samples collected during 1 yr on nine different dairies from six loafing barns, nine primary lagoons, 12 secondary lagoons, and six irrigation sample points. Pasture runoff samples were additionally analyzed for Cryptosporidium sp. and Giardia duodenalis, whereby detectable concentrations occurred sporadically at higher FCB concentrations resulting in poor correlations with FCB. Prevalence of both parasites was lower relative to high-use areas studied simultaneously on these same farms. Application of manure to pastures more than 2 wk in advance of storm-associated runoff was related to a > or =80% reduction in FCB concentration and load compared to applications within 2 wk before a runoff event. For every 10 m of buffer length, a 24% reduction in FCB concentration was documented. A one-half (75%), one (90%), and two (99%) log10 reduction in manure FCB concentration was observed for manure holding times in MMS of approximately 20, 66, and 133 d, respectively. These results suggest that there are several management and conservation practices for working farms that may result in reduced FCB fluxes from agricultural operations.  相似文献   

15.
In flat areas, transport of dissolved nutrients by water through the soil matrix to groundwater and drains is assumed to be the dominant pathway for nutrient losses to ground- and surface waters. However, long-term data on the losses of nutrients to surface water and the contribution of various pathways is limited. We studied nutrient losses and pathways on a heavy clay soil in a fluvial plain in The Netherlands during a 5-yr period. Average annual nitrogen (N) and phosphorus (P) losses to surface water were 15.1 and 3.0 kg ha(-1) yr(-1), respectively. Losses were dominated by particulate N (50%) and P (70%) forms. Rapid discharge through trenches was the dominant pathway (60-90%) for water and nutrient transport. The contribution of pipe drains to the total discharge of water and nutrients was strongly related to the length of the dry period in the preceding summer. This relationship can be explained by the very low conductivity of the soil matrix and the formation of shrinkage cracks during summer. Losses of dissolved reactive P through pipe drains appear to be dominated by preferential flow based on the low dissolved reactive P concentration in the soil matrix at this depth. Rainfall occurring after manure application played an important role with respect to the annual losses of N and P in spring when heavy rainfall occurred within 2 wk after manure application.  相似文献   

16.
ABSTRACT: Grazed pastures represent a potential source of non‐point pollution. In comparison to other nonpoint sources (e.g., row‐cropped lands), relatively little information exists regarding possible magnitudes of nutrient losses from grazed pasture, how those losses are affected by management variables, and how the losses can be minimized. The objective of this study was to measure concentrations of nitrogen (N), phosphorus (P), and solids in runoff from fescue plots and relate those measurements to simulated forage management strategy. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. The experimental treatments applied to the plots varied in terms of forage height and material applied (none, manure, or manure and urine). Runoff was sampled for six simulated rainfall events applied over the summer of 1997 and analyzed for nitrate N (NO3‐N), ammonia N (NH3‐N), total Kjeldahl N (TKN), ortho‐P (PO4‐P), total P (TP), and total suspended solids (TSS). All runoff constituents exhibited dependence on the date of simulated rainfall with generally higher concentrations measured when simulated rainfall followed relatively dry periods. The effects of forage height and manure addition were mixed. Highest runoff N concentrations were associated with the greatest forage heights, whereas highest P concentrations occurred for the least forage heights. Manure/urine addition increased runoff P concentrations relative to controls (no manure/urine) for both the greatest and least forage heights, but runoff N concentrations were increased only for the greatest forage heights. These findings indicate that runoff of N and P is at least as sensitive to amount and proximity of preceding rainfall and suggest that managing forage to stimulate growth and plant uptake can reduce runoff of N.  相似文献   

17.
ABSTRACT: Grazed pastures represent a potential source of non‐point pollution. In comparison to other nonpoint sources (e.g., row‐cropped lands), relatively little information exists regarding possible magnitudes of pollution from grazed pasture; how that pollution is affected by weather, soil, management and other variables; and how the pollution can be minimized. The objective of this study was to assess how the quality of runoff from fescue plots is influenced by duration of cattle manure application (4–12 weeks) and manure application strategy (none, weekly application of 1.4 kg/plot, and monthly application at 5.6 kg/plot). Additional analyses were performed to relate runoff quality to the timing of sample collection. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. Grazing was simulated by application of beef cattle manure to the plots. Runoff was generated by applying simulated rainfall approximately 4, S and 12 weeks following initiation of manure application. Runoff samples were collected and analyzed according to standard methods for nitrogen (N), phosphorus (P) and fecal coliforms (FC). Runoff concentrations of N and P from manure‐treated plots were low and generally not consistently different from control plot concentrations or related to manure application strategy. Runoff FC concentrations from manure‐treated plots were higher than from control plot concentrations. Runoff concentrations of ammonia N, total Kjeldahl N, ortho‐P and FC decreased approximately exponentially in response to increasing time of sample collection. These findings suggest that manure deposition on well‐managed pasture at the rates used in this study might have a negligible impact on nutrient content of runoff.  相似文献   

18.
It is common practice to repeatedly apply dairy manure to the same fields. To accurately assess the total plant availability of manure nutrients, it is necessary to account for the nutrients remaining in soil from previous manure applications. A field experiment studying manure nitrogen (N) uptake by corn (Zea mays L.) was conducted from 1998 to 2003 on a Plano silt loam (fine-silty, mixed, mesic, Typic Argiudolls). Plots received two rates of semisolid manure either every year, every 2 yr, or every 3 yr to estimate first-, second-, and third-year dairy manure N residuals. Residual manure N availability was estimated from single and multiple manure applications using (i) the fertilizer N equivalence method, (ii) the apparent recovery (difference) method, (iii) relative effectiveness method, and (iv) recovery of (15)N-labeled manure. Second-year availabilities after a single manure application using the fertilizer equivalence, difference, and relative effectiveness methods were estimated to be 12, 8, and 4% of total manure N applications, respectively. Estimates of third-year availability by these methods were 3, 1, and 5%, respectively. Measurement of (15)N recovered from labeled manure was 6 and 2% in the second and third year, respectively. Fertilizer equivalence, difference, and relative effectiveness methods showed great year to year variability, reducing the confidence in the residual manure N availability estimates by these methods, but using (15)N-labeled manures reduced variability substantially. Based on this and other studies, we suggest that second- and third-year residual N availability from a single application of semisolid dairy manure would be 9 to 12%, and 3 to 5% of the original manure N application, respectively.  相似文献   

19.
Effective manure management to efficiently utilize organic wastes without causing environmental degradation requires a clear understanding of the transformation of P forms from diet to manure. Thus, the objective of this study was to establish quantitative relationships between P forms in diets, feces, and manures collected from U.S. Northeastern and Mid-Atlantic commercial dairy farms. Total P in diets ranged from 3.6 to 5.3 g kg(-1) dry matter, while the feces had higher P than diets (5.7-9.5 g kg(-1)) and manures had lower P (2.5-8.9 g kg(-1)) than feces. The farms with total dietary P of 4.8 to 5.3 g P kg(-1) had twofold higher concentrations of phytic acid (1647-2300 mg P kg(-1)) than farms with 3.6 to 4.0 g dietary P kg(-1) (844-1100 mg P kg(-1)). Much of the phytic acid in diets was converted to inorganic orthophosphate in the rumen as indicated by a reduction in phytic acid percentage from diets (32%) to feces (18%). The proportion of orthophosphate diesters (phospholipids, deoxyribonucleic acid [DNA]) was twice as high in feces (6.2-10%) as diets (2.4-5.3%) suggesting the excretion of microbial residues in feces. Phosphonates (aminoethyl phosphonates and phosphonolipids) were not seen in diets but were detected in feces and persisted in manures, which suggests a microbial origin. These organic compounds (phytic acid, phospholipids, DNA) were decomposed on storage of feces in slurry pits, increasing orthophosphate in manures by 9 to 12% of total P. These results suggest that reducing dietary P and typically storing feces in dairy farms will result in manure with similar chemical forms (primarily orthophosphate: 63-77%) that will be land applied. Thus, both the reduction of dietary P and storage of manure on farm are important for controlling solubility and bioavailability of P forms in soils and waters.  相似文献   

20.
Incorporation of manure into cultivated soils is generally recommended to minimize nutrient losses. A 3-yr study was conducted to evaluate sediment and nutrient losses with different tillage methods (moldboard plow, heavy-duty cultivator, double disk, and no-incorporation) for incorporation of beef cattle manure in a silage barley (Hordeum vulgare L.) cropping system. Runoff depths, sediment losses, and surface and subsurface nutrient transfers were determined from manured and unmanured field plots at Lethbridge, Alberta, Canada. A Guelph rainfall simulator was used to generate 30 min of runoff. Sediment losses among our tillage treatments (137.4-203.6 kg ha(-1)) were not significantly different due to compensating differences in runoff depths. Mass losses of total phosphorus (TP) and total nitrogen (TN) in surface runoff were greatest from the no-incorporation (NI) treatments, with reductions in TP loads of 14% for double disk (DD), 43% for cultivator (CU), and 79% for moldboard plow (MP) treatments. Total N load reductions in 2002 were 26% for DD, 70% for CU, and 95% for MP treatments compared to the NI treatments. Nutrient losses following incorporation of manure with the DD or CU methods were not significantly different from the NI treatments. Manure treatments generally had lower runoff depths and sediment losses, and higher phosphorus and nitrogen losses than the control treatments. Subsurface concentrations of NH4-N, NO3-N, and TN were greatest from the MP treatments, whereas subsurface phosphorus concentrations were not affected by tillage method. Tillage with a cultivator or double disk minimized combined surface and subsurface nutrient losses immediately after annual manure applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号