首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen and carbon isotopic composition of the aragonite of fish otoliths was measured on 175 specimens comprising 24 different species in 1989 and 1990. All specimens but two came from the northern Adriatic Sea or the northern Tyrrhenian Sea (two freshwater specimens were studied for comparison with the marine fish). The data obtained confirm the results of previous research suggesting the existence of equilibrium conditions between the otolith aragonite and ambient water with respect to ·18O(CO3 2-) values. Examination of one of the species indicated that the CaCO3 of otoliths probably accumulates continuously over time, seasonal isotopic changes being clearly visible (from a set of radial spot samples) for both oxygen and carbon isotopes. The apparent isotopic equilibrium with ambient water suggests that the 18O(H2O) of the endolymph is equal to that of seawater and considerably different from that of fish body water. In the case of 13C(CO3 2-), isotopic equilibrium with dissolved carbon species in seawater is never reached, even though the contribution of metabolic CO2 is variable among different species and even among different individuals of the same species. This rules out the possibility of using 13C(CO3 2-) values obtained from fossil otoliths for paleoenvironmental and paleobiological conclusions.  相似文献   

2.
Australian salmon,Arripis trutta, collected from the east coast of Tasmania, Australia, in 1987, were weighed and measured and their otoliths marked by immersing fish in an oxytetracycline hydrochloride/seawater solution before placement in constant-temperature aquaria. Individual somatic and otolith growth rates were determined for input into mass balance models. Mass balance models were used to determine the oxygen and carbon isotopic composition of otolith material produced during captivity. There was a significant relationship between 18O measured in the otolith aragonite and ambient temperature (r 2 = 0.77). The linear relationship between these data, where 18O = 6.69 – 0.326 (T, °C), was not significantly different from a relationship indicative of equilibrium deposition of oxygen isotopes in aragonite. Otolith carbon was significantly depleted in13C relative to equilibrium deposition, with depletions >6.0 at all temperatures. There was no relationship between 13C and temperature. It was estimated that >30% of the otolith carbon was from metabolically derived sources. Significant differences in otolith carbon isotopes among wild juvenile Australian salmon were hypothesised to be attributable to differences in diet. Levels of variability for both oxygen and carbon isotopes in laboratory-maintained and wild fish were similar to that found by other researchers for foraminifera and these results highlight the importance of large sample sizes when estimating environmental temperatures from oxygen isotopes measured in fish otoliths.  相似文献   

3.
Isotopic exchange occurs between coral skeleton and 45Ca++ and H14CO 3 - in seawater. Exchange of 14C onto skeletons is more rapid than exchange of 45Ca++. Exchange of 14C from skeletons to seawater takes place more slowly than exchange of 45Ca++ to seawater. When living coral is incubated in the dark with radioisotopes for 1 h, the tissues contain considerably more radioactivity than is associated with the skeleton. The tissue radioactivity reflects permeation of tissues and coelenteron by radioactive compounds from the incubation seawater. Addition of alkalis to cardioactive seawater results in a radioactive precipitate, part of which becomes associated with any coral skeleton present, and part of which forms on the wall of the containing vessel. Strong alkali removes biologically-deposited radioisotope from coral skeletons. Deposition, of 14C from H14CO 3 - in skeletons of living coral incubated in the dark is greater than in dead coral. The reverse situation occurs with 45Ca++.  相似文献   

4.
Transgenerational isotope labelling (TRAIL) using enriched stable isotopes provides a novel means of mass-marking marine fish larvae and estimating larval dispersal. The technique, therefore, provides a new way of addressing questions about demographic population connectivity and larval export from no-take marine protected areas. However, successful field applications must be preceded by larval rearing studies that validate the geochemical marking technique, determine appropriate concentrations and demonstrate that larvae are not adversely affected. Here, we test whether injection of enriched stable barium isotopes (135Ba and 137Ba) at two dose rates produces unequivocal marks on the otoliths of the coral reef grouper Epinephelus fuscoguttatus. We also assess potential negative effects on reproductive performance, egg size, condition and larval growth due to injection of adult female fish. The injection of barium isotopes at both 0.5 and 2.0 mg Ba/kg body weight into the body cavities of gravid female fish was 100% successful in the geochemical tagging of the otoliths of larvae from the first spawning after injection. The low-dose rate produced no negative effects on eggs or larvae. However, the higher dose rate of 2 mg Ba/kg produced small reductions in yolk sac area, oil globule area, standard length and head depth of pre-feeding larvae. Given the success of the 0.5 mg Ba/kg dose rate, it is clearly possible to produce a reliable mark and keep the concentration below any level that could affect larval growth or survival. Hence, enriched Ba isotope injections will provide an effective means of mass-marking grouper larvae.  相似文献   

5.
Life-long strontium patterns in otoliths of the sciaenid Micropogonias furnieri caught in the southwestern Atlantic Ocean were examined to evaluate estuarine dependency and habitat use. Otolith Sr concentrations were on average 820?±?55?μg?g?1 for freshwater, 1,751?±?101?μg?g?1 for estuarine, and ranged from 2,000 to over 4,000?μg?g?1 for marine waters. The examination of life-long otolith Sr revealed that 71?% of the marine-sampled fish moved toward brackish waters from age 0 to age 1, and that estuarine egress ranged from ages 2.1 to 4.1?years depending on the sampling area. Three different long-term patterns of Sr accumulation were observed and inferred to be the result of ontogeny and habitat shifts. Given that an estuarine Sr signature was consistently present in all sampled fish, M. furnieri is suggested to be a true estuarine-dependent species during its early life history.  相似文献   

6.
The mechanism of calcification and its relation to photosynthesis and respiration were studied with Ca2+, pH and O2 microsensors using the scleractinian coral Galaxea fascicularis. Gross photosynthesis (Pg), net photosynthesis (Pn) and dark respiration (DR) were measured on the surface of the coral. Light respiration (LR) was calculated from the difference between Pg and Pn. Pg was about seven times higher than Pn; thus, respiration consumes most of the O2 produced by the algal symbiont's photosynthesis. The respiration rate in light was ca. 12 times higher than in the dark. The coupled Pg and LR caused an intense internal carbon and O2 cycling. The resultant product of this cycle is metabolic energy (ATP). The measured ATP content was about 35% higher in light-incubated colonies than in dark-incubated ones. Direct measurements of Ca2+ and pH were made on the outer surface of the polyp, inside its coelenteron and under the calicoblastic layer. The effects on Ca2+ and pH dynamics of switching on and off the light were followed in these three compartments. Ca2+ concentrations decreased in light on the surface of the polyp and in the coelenteron. They increased when the light was switched off. The opposite effect was observed under the calicoblastic layer. In light, the level of Ca2+ was lower on the polyp surface than in the surrounding seawater, and even lower inside the coelenteron. The concentration of calcium under the calicoblastic layer was about 0.6 mM higher than in the surrounding seawater. Thus Ca2+ can diffuse from seawater to the coelenteron, but metabolic energy is needed for its transport across the calicoblastic layer to the skeleton. The pH under the calicoblastic layer was more alkaline compared with the polyp surface and inside the coelenteron. This rise in pH increased the supersaturation of aragonite from 3.2 in the dark to 25 in the light, and brought about more rapid precipitation of CaCO3. When ruthenium red was added, Ca2+ and pH dynamics were inhibited under the calicoblastic layer. Ruthenium red is a specific inhibitor of Ca-ATPase. The results indicated that Ca-ATPase transports Ca2+ across the calicoblastic layer to the skeleton in exchange for H+. Addition of dichlorophenyldimethylurea completely inhibited photosynthesis. The calcium dynamics under the calicoblastic layer continued; however, the process was less regular. Initial rates were maintained. We conclude that light and not energy generation triggers calcium uptake; however, energy is also needed.  相似文献   

7.
Increments in the hard parts of marine organisms (otoliths, skeletons, shells) can provide long-term chronologies of growth analogous to tree rings. For the first time in the Southern Hemisphere, we use a dendrochronological (tree-ring analysis) approach to develop a multidecadal chronology of growth for a temperate reef fish, Girella tricuspidata, from the coast of northern New Zealand. Growth patterns in the otoliths of this species were strongly synchronous among individual fish over a period spanning 27 years (1980–2006). We then compared our otolith chronology to climatic records and found strong positive correlations of growth with sea surface temperature, and weak negative correlations with the multivariate El Nino Southern Oscillation (ENSO) index. Strongest correlations were found between summer sea surface temperature and otolith growth. This relationship was consistent across all years and explained 44 % of the variation (y = −2.0 + 0.1785 × temperature, r 2 = 0.4367, P = 0.0002) in the G. tricuspidata growth chronology. Our study illustrates how otolith chronologies provide remarkable records of annual growth patterns over decadal time scales that will be useful for forecasting the likely effects of climate change on marine ecosystems.  相似文献   

8.
In order to explore the effect of different ecological zones and their above plants in the organic matter cycling of the whole tidal salt marsh, indicators such as total organic carbon (TOC), total nitrogen (TN), C/N ratio, δ13C and δ15N of surface, core sediments, and plants of tidal salt marshes in North Jiangsu Province are analyzed. Subsequently, distribution regularities of these measurement indicators are discussed, and the biogeochemistry processes between sediments and plants are also analyzed. Lastly, the organic matter sources of different ecologic zones in tidal salt marsh are evaluated, and the organic matter accumulations in different ecologic zones induced by their plants are also compared. These results indicate that TOC, TN, C/N ratio and δ13C showed obvious zonal distribution. The organic matter sources are dominated by marine input in the silt flat, artemisia schrenkiana flat, and the transition zone between silt and spartina alterniflora flat, and are controlled by terrigenous input in spartina alterniflora flat. Spartina alterniflora plays an important role in the accumulation of organic matter in the whole tidal salt marshes ecosystem. In the study area, the annually increased TOC, organic matter and TN in the spartina alterniflora, artemisia schrenkiana and reed flats reach 6,451, 12,043 and 536 t, respectively. The amount of TOC, organic matter and TN accumulated in the spartina alterniflora flat is more than that in other ecological zones, which shows that the spartina alterniflora flat exert a non-replaceable effect on the material cycle and exchange in the whole tidal salt marshes ecosystem.  相似文献   

9.
Phosphate depleted Pyrocystis noctiluca (Murray) Schuett 1895 has at least one phosphomonoesterase (EC 3:1:3:1) which is triphasic between 0.1 and 222 mol P. The enzyme has a broad temperature range with maximum activity at 50 °C and a Q10 of 1.4 to 1.5. A break in the Arrhenius plot at 35 °C implies the enzyme is membrane-bound. Cytological staining of whole cells and cell fractionation studies (showing 26 times higher specific activity in the particulate compared with the cytoplasmic fraction) suggest the enzyme is plasmalemma-bound. The enzyme has an absolute metal requirement which would be satisfied by Mg++ but not Mn++, Zn++, Fe++, or Co++ at seawater concentrations. Alkaline phosphatase is a stable enzyme whose activity is not altered by inhibitors of protein synthesis. Orthophosphate inhibition of enzyme activity was largely eliminated in the presence of these inhibitors. Apparently, a protein induced by PO4 3-, rather than PO4 3- itself, inhibits alkaline phosphatase. Cell-free alkaline phosphatase can hydrolyze a variety of phosphate esters and linear polymers of inorganic phosphorus as well as disolved organic phosphorus from tropical oceanic waters. These same hydrolysable organic and inorganic phosphorus compounds support the axenic culture growth of P. noctiluca, suggesting that naturally occurring hydrolysable organic phosphorus compounds may also support the growth of this alga.  相似文献   

10.
The sinking rates of fecal matter from 7 southern California midwater fish species were investigated. Feces were obtained from 162 specimens of Stenobrachius leucopsarus, Triphoturus mexicanus, Leuroglossus stilbius, Lampanyctus ritteri, Argyropelecus affinis and Parvilux ingens, which were collected in the Santa Barbara and San Clemente Basins between 1977 and 1979. In addition, feces obtained from 6 laboratory-maintained specimens of the midwater zoarcid Melanostigma pammelas were used for repeated sinking-rate measurements. The mean of the measured sinking rates for all species was 1.19 cm s-1 (1 028 m d-1), which is much higher than the known descent rates of euphausiid and copepod fecal pellets and of most other particulate organic detritus. Dissolution characteristics were also investigated for fecal matter from 4 species collected by the same series of net hauls: S. leucopsarus, T. mexicanus, A. affinis, and Sternoptyx obscura. The release of dissolved organic compounds from this material is low and does not represent a significant output during the relatively short time required to sink through the water column. These findings suggest that midwater fish fecal matter may represent a major source of organic transfer between the pelagic community and the benthos.  相似文献   

11.
12.
Natural levels of210Pb:226Ra in otoliths of orange roughy,Hoplostethus atlanticus, from south-east Australian waters, were measured to determine fish ages radiometrically. Up to maturity, radiometric age estimates were consistent with a single constant otolith growth rate. Radiometric ages for juveniles were comparable with, but greater than, those obtained in a recent, validated New Zealand study which employed counts of annuli on the surface of otoliths. Beyond maturity, radiometric ages were obtained by modelling with an otolith growth rate set at 45% of the juvenile rate. Radiometric ageing confirms that orange roughy is very slow-growing, with an age at maturity (32 cm standard length, SL) of ~ 32 yr, and is very long-lived, with fish 38 to 40 cm being 77 to 149 yr old. These results have important implications for the management of the fishery.  相似文献   

13.
Otolith increment age estimates for a deepwater species, Allocyttus verrucosus, were validated by comparison with the results from 210Pb:226Ra radiometric analysis. Transverse sectioning and subsequent grinding of otoliths to a thickness of 0.2 mm revealed increments which provided age estimates for a range of fish sizes. Age estimates ranged from 7 yr for an immature fish of 15.2 cm total length (TL) to 130 yr for a female fish of 36.5 cm TL. Age at maturity was estimated as 28 yr for females and 24 yr for males. In comparison, radiometric analysis of whole otoliths, using a single linear otolith-mass growth-rate model suggested maximum ages of 130 to 170 yr for fish of 34 to 35 cm TL. Radiometric ages were also recalculated using a two-phase otolith-mass growth-rate model in which the growth rate was assumed to slow after maturity to 90% of the pre-maturity rate. This reduced the maximum age to 132±15 yr for a mean fish length of 34.5 cm. Age at maturity for females was estimated at 34 yr. The similarity between age estimates from otolith-increment counts and radiometric analysis strongly supports the accuracy of results from both methods, and encourages further use of such comparisons as an alternative to traditional validation techniques.  相似文献   

14.
Gram negative bacteria classified as Alcaligenes eutrophus and carrying large resistance plasmids (generally two) were found in various industrial sites highly contaminated by heavy metals (Zn++, Cu++, Co++,...). These strains were detected by DNA hybridization with a probe made with a 9kb fragment (ccz+ fragment) encoding for resistances to Cd++, Co++ and Zn++, and cloned from plasmid pMOL30. This plasmid was isolated from the representative strain A. eutrophus CH34 which harbours the plasmids pMOL30 (240 kb) and pMOL28 (165 kb). Phenotypes related to pMOL28 and pMOL30 include the tolerance to Cd++, Co++, Cr04 =, Cu++, Hg++, Ni++, Pb++ and Zn++. The described genetic properties of these plasmids refer to some cloned or mapped functions and to some plasmid rearrangements. Plasmid pMOL85 (250 kb) which is related to pMOL30 was also described. Its host (A. eutrophus DS185) was isolated from a zinc desert. pMOL85 can efficiently self transfer in plasmidfree derivatives.  相似文献   

15.
 Territorial Parma microlepis (Günther) (Pomacentridae) were collected at different depths, at three sites in each of four estuaries near Sydney, Australia. Element concentrations were measured by induc- tively-coupled–plasma mass spectrometry. Significant differences in concentrations of Mn and Ba were found in the otoliths of fish sampled in different depth strata, with concentrations generally greatest in fish found in water <4 m deep. Depth-related differences varied among estuaries (e.g. 0 to 1.2 μg Ba g−1 otolith). In most estuaries there was a negative linear relationship between concentrations of Mn and Ba in otoliths and actual depth. Great variation was found within an estuary among sites separated by 0.5 to 3 km. In the eye lenses, concentrations of Rb differed according to depth of capture of fish. The age of fish (1+ to 34 yr) had no influence on the concentrations of elements in otoliths or lenses. Multivariate comparisons of elemental composition (= fingerprints) detected significant differences among depth strata. Fish collected from shallow water had the clearest multivariate classification according to depth. There was a close match between our shallow strata and the average depths reached by low-salinity/high-temperature estuarine plumes. The element composition of whole otoliths and lenses represents average concentrations experienced by the fish. The temporal resolution of differences in ambient conditions is likely to be coarse in the fish (i.e. months to years). Received: 9 April 1999 / Accepted: 29 February 2000  相似文献   

16.
The tropical alga Neomeris annulata (Dickie) (Dasycladaceae: Chlorophyta) produces brominated sesquiterpenes and deposits aragonite throughout the thallus. This study, conducted throughout 1990–1991, showed that the fleshy, apical portions of the thalli (tips) were high in secondary metabolite concentrations (1.5%, mean combined secondary metabolites based on dry mass) and relatively low in calcium carbonate (aragonite form) (65.2% ash). The basal portions were lower in combined secondary metabolites (0.2% dry mass), and higher in aragonite (90.0% ash). The crude organic extract of the alga deterred fish feeding in the field at concentrations of 5, 10 and 15% dry mass, but not at a lower concentration of 1.5%. Natural concentrations of crude organic extract ranged from 1.5 to 15.3% in whole individuals and averaged 5.1% based on dry mass. Two brominated sesquiterpenes were isolated as major metabolites from the crude extract, but only one deterred feeding at natural concentrations. Ash concentrations in N. annulata were 60% dry mass in both the tips and bases. Aragonite strongly deterred feeding at concentrations of 65 and 90% dry mass. When a naturally occurring combination of organic extract and aragonite in the tips (10% crude extract and 65% aragonite) was compared with that of the bases (0.8% crude extract and 90% aragonite), no significant difference in grazing was observed. Combinations of secondary metabolites and aragonite were also tested against one or the other single defense. The combination of defenses proved a more effective deterrent than either secondary metabolites or aragonite alone.  相似文献   

17.
J. Otto  S. K. Pierce 《Marine Biology》1981,61(2-3):185-192
In order to study the interaction of the extracellular and intracellular osmoregulatory systems of the bivalve Rangia cuneata, we have measured blood osmotic and ionic concentrations together with intracellular free amino acid concentrations and total tissue water under identical salinity conditions. Like freshwater bivalves, the blood of R. cuneata is maintained hyperosmotic (50 mOsm) to the environment in salinities below 110 mosm by the regulation of Na+, Cl-, K+ and Ca2+ concentrations. On the other hand in company with marine bivalves, R. cuneata also regulates intracellular free amino acids (FAA) as a mechanism to control cellular volume during osmotic stress over the entire non-lethal salinity range (3 to 620 mOsm). Alanine is the predominant intracellular osmotic effector. Thus, by utilizing the osmoregulatory mechanisms of both marine and freshwater bivalves, R. cuneata is able to tolerate salinities ranging from freshwater to 25 ppt and to traverse the faunal salinity boundary, known as the horohalinicum (5 to 8 ppt), controlling cell volume throughout.Please address requests for reprints to Dr. S. K. Pierce  相似文献   

18.
Food sources for cultivated marine bivalves generally are not well identified, although they are essential for a better understanding of coastal ecosystems and for the sustainability of shellfish farming activities. In addition to phytoplankton, other organic matter sources (OMS), such as microphytobenthos and detritus (of terrestrial or marine origins), can contribute significantly to the growth of marine bivalves. The aim of this study was to identify the potential food sources and to estimate their contributions to the growth of the Pacific oyster (Crassostrea gigas) in two contrasting trophic environments of Normandy (France): the Baie des Veys (BDV) and the Lingreville area (LIN). Two sites were studied in the BDV area (BDV-S and BDV-N) and one in the LIN area. To estimate the contribution of each type of OMS, we used a combination of stable natural isotope composition (δ13C, δ15N) analysis of OMS and oyster tissue together with a modelling exercise. Field sampling was conducted every 2 months over 1 year. The sampled sources were suspended particulate organic matter from marine (PhyOM) and terrestrial (TOM) origins, microphytobenthos (MPB), detrital organic matter from the superficial sediment (SOM), and macroalgae (Ulva sp., ULV). A statistical mixing model coupled to a bioenergetic model was used to calculate the contributions of each different source at different seasons. Results showed that isotopic composition of the animal flesh varied with respect to the potential OMS over the year within each ecosystem. Significant differences were also observed among the three locations. For instance, the δ13C and δ15N values of the oysters ranged from −20.0 to −19.1‰ and from 6.9 to 10.8‰ at BDV-S, from −19.4 to −18.1‰ and from 6.4 to 10.0‰ at BDV-N, and from −21.8 to −19.4‰ and from 6.3 to 8.3‰ at LIN. The contributions of the different sources to oyster growth differed depending on the ecosystem and on the period of the year. Phytoplankton (PhyOM) predominated as the principal food source for oysters (particularly in the LIN location). MPB, TOM, and ULV detritus also possibly contributed to oysters’ diet during summer and autumn at the BDV-S and BDV-N sites. SOM was not considered an OMS because it was already a mix of the other four OMS, but rather a trophic reservoir that potentially mirrored the trophic functioning of marine ecosystems.  相似文献   

19.
The quantity and quality of organic matter, and bacterial density and frequency of dividing cells were investigated in six microtidal mixed beaches of the Ligurian Sea (NW Mediterranean) to evaluate their main trophodynamic features. Concentrations of biopolymeric carbon (average 88.5?±?89.0 µgC/g) and the protein:carbohydrate ratio (on average lower than 1) were very low and classified these beaches as highly oligotrophic. The study of biochemical composition highlighted the nature of organic matter as being mainly refractory; furthermore, the quantitative differences observed along the across-beach gradient together with the unchanged pattern in qualitative features suggest that the organic matter in Ligurian beaches is prevalently of marine origin. This implies a negligible contribution of allochtonous and anthropogenic terrestrial input or in situ autochthonous production. Bacterial density displayed values ranging from 0.1–9.0 cell?×?108/g DW in the top 2?cm layer and showed a significant correlation with the quantity of organic matter. In addition, the frequency of dividing cells showed a positive correlation with the protein:carbohydrate ratio, suggesting that the biochemical composition of organic matter also has an influence on the active bacterial fraction. Because of the exposed nature, a strong coupling was found between the beach and the marine systems, and this seems to be of fundamental importance in terms of material and energy supply for the beach ecosystem. A shortage within this linkage was observed in summer owing to the strong environmental constrains leading to a sort of “beach desertification” and to a marked oligotrophy. Summer also has an effect of smoothing for spatial variability occurring within the biochemical and microbiological variables among the different beaches. The linkage observed between the sea and the land is the main factor controlling the origin and nature of sediment organic matter in these beaches also regulating bacterial abundances and the frequency of dividing cells.  相似文献   

20.
We examined site differences in the elemental composition of the primordium and ontogenetic variability of Sr in otoliths of fish from Australia and New Zealand and, as an out-group, the North Atlantic. Differences among sites in primordium composition are slight, but significant for all five elements assayed (Sr, Pb, Cu, Zn and Hg), but principally reflect differences between the North Atlantic and SW Pacific specimens, do not replicate for independent samples in the SW Pacific and constitute a poor “natural tag” in roughy, with <25% of fish successfully assigned to source location. However, mean Sr weight-fractions at the primordium showed similar latitudinal variation across sites in Australia, New Zealand and the Tasman Sea, indicating both spatially structured populations and a common structuring process across the region. Comparisons of ontogenetic variability of Sr in otoliths from juveniles and young adults within and between sites in the SW Pacific strongly support the hypothesis that variability in this element is site-specific and environmentally sensitive, although the environmental factors involved are not obvious. The otolith analysis confirms previous suggestions that juvenile and adult Hoplostethus atlanticus are relatively sedentary, but also indicates that the population sub-structuring by age within sites is more complex and there are likely to be more spawning areas in Australian waters than previously thought. More broadly, although single point analysis of otolith composition at the primordium resolves a population structure in roughy, alone it is not precise enough to test hypotheses about the processes causing this structure. Ontogenetic variability in Sr provides better resolution of spatial structure, even in a relatively homogenous marine environment like the deep ocean, and also provides insight into behavioural and ecological factors. Ontogenetic analyses of Sr in otoliths are expensive to obtain, require more effort in specimen preparation than single point analyses, and are difficult to compare statistically, but the increased information they yield warrants their broader consideration in marine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号