首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
Seventeen airborne carbonyls including monocarbonyls and dicarbonyls were determined in urban and sub-urban sites of Xi’an, China in three seasons in 2010. In winter, acetone was the most abundant carbonyl in the urban site due to usage of organic solvents in constructions and laboratories and its slower atmospheric removal mechanisms by photolysis and reaction with hydroxyl radical than those of formaldehyde and acetaldehyde. In the sub-urban site, acetaldehyde was the most abundant carbonyl, followed by formaldehyde and acetone. During summer, however, formaldehyde was the most dominant carbonyl in both sites. The photooxidations of a wide range of volatile organic compounds (VOCs) yielded much more formaldehyde than other carbonyls under high solar radiation and temperature. In the urban site, the average concentrations of dicarbonyls (i.e., glyoxal and methyglyoxal) in spring and summer were higher than that in winter. Transformation of aromatic VOCs emitted from fuel evaporation leads to the formation of 1,2-dicarbonyls. A reverse trend was observed in sub-urban sites, as explained by the relatively low abundances and accumulations of VOC precursors in the rural atmosphere during warm seasons. Moreover, cumulative cancer risk based on measured outdoor carbonyls (formaldehyde and acetaldehyde) in Xi’an Jiaotong University and Heihe was estimated (8.82?×?10?5 and 4.96?×?10?5, respectively). This study provides a clear map on the abundances of carbonyls and their source interpretation in the largest and the most economic city in Northwestern China.  相似文献   

3.
A forest ecological inventory and monitoring system combining information derived from maps and samples is proposed based on ecosystem regions (Bailey, 1994). The system extends the design of the USDA Forest Service Region 6 Inventory and Monitoring System (R6IMS) in the Pacific Northwest of the United States. The key uses of the information are briefly discussed and expected results are illustrated with examples. The system is flexible, allowing regions based on ecological considerations to be modified. Sampling intensities that are affordable are likely to be insufficient to provide meaningful estimates for key parameters relating to rare and endangered species, watersheds, and other ecological units. Methods are proposed for collecting additional information in follow-up surveys and combining it with relevant information obtained in R6IMS. Near-continuous information on weather and possible pollution variables recorded by instruments at sampling sites is needed to develop meaningful models to understand what is happening in the ecoregions. R6IMS and the proposed additions constitute a dynamic system which will be modified further as data are analyzed.  相似文献   

4.
The purpose of the present research is to identify the trends in the concentrations of few atmospheric pollutants and meteorological parameters over an urban station Kolkata (22° 32′ N; 88° 20′ E), India, during the period from 2002 to 2011 and subsequently develop models for precise forecast of the concentration of the pollutants and the meteorological parameters over the station Kolkata. The pollutants considered in this study are sulphur dioxide (SO2), nitrogen dioxide (NO2), particulates of size 10-μm diameters (PM10), carbon monoxide (CO) and tropospheric ozone (O3). The meteorological parameters considered are the surface temperature and relative humidity. The Mann–Kendall, non-parametric statistical analysis is implemented to observe the trends in the data series of the selected parameters. A time series approach with autoregressive integrated moving average (ARIMA) modelling is used to provide daily forecast of the parameters with precision. ARIMA models of different categories; ARIMA (1, 1, 1), ARIMA (0, 2, 2) and ARIMA (2, 1, 2) are considered and the skill of each model is estimated and compared in forecasting the concentration of the atmospheric pollutants and meteorological parameters. The results of the study reveal that the ARIMA (0, 2, 2) is the best statistical model for forecasting the daily concentration of pollutants as well as the meteorological parameters over Kolkata. The result is validated with the observation of 2012.  相似文献   

5.
Ground level ozone (O3) concentration was monitored during the period of December 2004 to November 2005 in an urban area in Greater Cairo (Haram, Giza). During the winter and summer seasons, nitrogen dioxide (NO2) and nitric oxide(NO) concentrations and meteorological parameters were also measured. The mean values of O3 were 43.89, 65.30, 91.30 and 58.10 ppb in daytime and 29.69, 47.80, 64.00 and 42.70 ppb in whole day (daily) during the winter, spring, summer and autumn seasons, respectively. The diurnal cycles of O3 concentrations during the four seasons revealed a uni-modal peak in the mid-day time, with highest O3 levels in summer due to the local photochemical production. The diurnal variations in NO and NO2 concentrations during the winter and summer showed two daily peaks linked to traffic density. The highest levels of NOx were found in winter. Nearly, 75%, 100%, 34.78% and 52.63% of the mean daytime concentrations of O3 during spring,summer, autumn and the whole year, respectively, exceeded the Egyptian and European Union air quality standards (60 ppb) for daytime (8-h) O3 concentration. About, 41.14% and 10.39% of the daytime hours concentrations and 14.93% and 3.77% of the daily hour concentrations in summer and the whole year, respectively, exceeded the Egyptian standard (100 ppb) for maximum hourly O3 concentration, and photochemical smog is formed in the study area (Haram) during a periods represented by the same percentages. This was based on the fact that photochemical smog usually occurs when O3 concentration exceeds 100 ppb. The concentrations of O3 precursors (NO and NO2) in weekends were lower than those found in weekdays, whereas the O3 levels during the weekends were high compared with weekdays. This finding phenomenon is known as the "weekend effect". Significant positive correlation coefficients were found between O3 and temperature in both seasons and between O3 and relative humidity in summer season, indicating that high temperature and high relative humidity besides the intense solar radiation (in summer) are responsible for the formation of high O3 concentrations.  相似文献   

6.
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments.Declining sulfate (O 4 2-) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (O 4 2-) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining O 4 2- concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2++ Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO3 -), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (∼decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies.  相似文献   

7.
We have aimed at characterizing top soil samples taken in-situ from five different locations of the unregulated dumping site in Eskişehir/Turkey for a period of six months. The study is the first attempt in the city and in Turkey, regarding particularly the SPME (Solid Phase Microextraction Technique) analysis method utilized. A comprehensive research has been conducted to produce critical soil data to be used for indicating current risks as well as the urgency of rehabilitating the site and establishing a sanitary landfill in the site. Conventional physicochemical analytical methods and SPME technique were used to analyze the samples. Physicochemical analyses were performed for determining the pH, total dried matter, volatile matter, total nitrogen, phosphorus, macro elements and heavy metals. Meteorological data were also recorded for the same period. SPSS.10.0 statistical program was used to determine the correlation between meteorological data and physicochemical analysis results. Mean values were used in the correlation analyses. These data indicated that the air temperature and precipitation have significant effects on soil characteristics. SPME, coupled with GC/MS, was used to identify eighty six volatile and semi-volatile organic compounds contained in soil samples. The samples were extracted by headspace SPME with heating (δHS-SPME). SPME analyses were conducted using a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber having a film thickness of 65 μm (Supelco) as a capture medium. The experimentally optimized headspace sampling conditions were arranged (15 min. at 50˚C) before a 30 min. sampling period.  相似文献   

8.
In this study, an integrated solid waste management system based on inexact fuzzy-stochastic mixed integer linear programming (IFSMILP) has been applied to the long-term planning of waste management activities in the City of Regina. The model can effectively reflect dynamic, interactive, and uncertain characteristics of the solid waste management system in the city. The results have provided useful answers for the following questions: “What waste reduction goals are desired if the existing landfill's life is prolonged for 15 years?”, “What should be the waste flow allocation pattern in the city?”, “What should be done if the waste generation rate increases rapidly, while the relevant handling capacity is limited?”, and “What level of reliability will we have given the suggested waste management plan?”  相似文献   

9.
The accumulation of heavy metals (Cd, Cr, Cu, Pb and Zn) and magnetic minerals in soils along an urban-rural gradient in the rapidly growing Hangzhou City, Eastern China, was measured. The analytical results indicated that heavy metal concentrations, magnetic susceptibility (chilf) and saturation isothermal remnant magnetization (SIRM) in soils decreased with increasing distance from the urban center. The significant relationships existed between heavy metal concentrations, chilf and SIRM and distance from the urban center. The soils in the urban areas were enriched with Cd, Cu, Pb and Zn. Elevated concentrations of heavy metals (especially Cd and Zn) in urban areas indicated the evidence for the accumulation of heavy metal contaminants from anthropogenic activities. Enhanced heavy metal concentrations and magnetic susceptibility were located in the uppermost soil horizons (0-10 cm), decreasing downwards to background values. The significant positive correlations between the Tomlinson Pollution Load Index (PLI) and magnetic susceptibility and SIRM were observed in polluted soil samples. Strong positive correlation indicated that magnetic screening/monitoring provided a fast and non-destructive tool, which can be effectively used as a proxy to detect environmental pollution in rapidly growing urbanization regions affected by anthropogenic activities.  相似文献   

10.
A 5-day biochemical oxygen demand (BOD(5)) test has been used as the standard measurement of organic pollution in rivers worldwide. However, it may be argued that BOD is not a sufficient indicator of organic pollution when nitrogenous biochemical oxygen demand (NBOD) is present in water samples. In this study, BOD, NBOD, and carbonaceous biochemical oxygen demand (CBOD) of treated sewage effluent (TSE) were measured near at the discharge outlet of 3 sewage treatment plants (STPs) in Sakai, Itachi, and Kashio rivers in Central Japan. Additional measurements were conducted at one point upstream and two points downstream from the STP discharge points in the rivers. It was estimated that NBOD values in the TSE of Sakai River, Kashio River and Itachi River accounted for 54%, 69% and 18% of their BOD values, respectively. Respective NH4+ and NO2- concentrations were positively correlated with those of NBOD values in Sakai, Itachi, and Kashio rivers. The BOD loads from the TSE were estimated to be 2.2, 5.7, and 1.2 times higher than the CBOD loads in the Sakai, Itachi, and Kashio rivers, respectively. The variation of the portion of NBOD values of each TSE, as well as the ratios of CBOD to BOD loads, was attributed to the difference in each STP system. Consequently, the NH4+ and NO2- of TSE led to the increase of NBOD in the Sakai River basin.  相似文献   

11.
The potential biodegradation and subsequent transformation of 17β-estradiol (E2) to estrone (E1) were examined in the presence of various dissolved organic matter (DOM) isolated from effluent, river and lake waters. In addition, estrogenicity was estimated in association with the removal of E2 via its sorption onto DOM and biodegradation. The more biodegradable lake-derived DOM promoted more extensive transformation of E2 into E1 than the effluent organic matter through a biodegradation process. Overall, under all conditions, biodegradation dominated the removal of E2 in water. The increased dissolved organic carbon (DOC) concentrations in river and lake-derived DOM (e.g. 6.5 mg C L(-1)) reduced the removal of E2 by decreasing its biodegradation due to the moderate sorption of E2 onto DOM. The effluent organic matter showed greater removal of E2 via biodegradation, as well as significantly high sorption. This was associated with a large amount of hydrophobic fulvic acid (FA)- and humic acid (HA)-like organic components, as shown by the small increase in the specific UV absorbance at 254 nm (SUVA(254)). An increase in the DOC concentration reduced the removal of E2, resulting in high estrogenicity. The present study suggests that both organic composition and DOC concentration influenced the removal of E2 and, therefore, should be fully considered when assessing estrogenicity and its impacts on the aquatic environment.  相似文献   

12.
The process of a bioindication of genotoxic effects of complex mixtures on the environment using higher plants is very appropriate and effective. We present the results of an in situ indication of the genotoxic effects of polluted environment near Žilina city. For a more complex monitoring we used: the Tradescantia micronucleus (Trad-MCN) assay, the Tradescantia microspore test and an evaluation of the abortivity of the pollen grains of native plant species. We found significant differences in the frequency of the micronuclei when using the Trad-MCN test in local of Dubeň. The Tradescantia pollen abortivity test showed significant differences in the frequency of the abortive pollen grains between the exposed groups and the control group. By using native plant species in the pollen abortivity test we found significant differences in both of the two locations for the four following species during two consecutive years: Artemisia vulgaris, Melilotus albus, Trifolium pratense, Typha latifolia.  相似文献   

13.
Analysis of summer and winter vegetable samples during 2002–2003 for pesticidal contamination was carried out on Gas Chromatograph-Electron Capture Detector with capillary columns. The contamination levels of winter vegetables (average concentration of 4.57, 6.80 and 5.47 ppb respectively for Lindane, Endosulphan and DDT) were found to be slightly higher than the summer vegetables (average concentration of 4.47, 3.14 and 2.82 ppb respectively for Lindane, Endosulphan and DDT). The concentration of these organochlorine pesticides in summer and winter vegetables were well below the established tolerances but continuous consumption of such vegetables even with moderate contamination level can accumulate in the receptor's body and may lead to chronic effects that could be fatal.  相似文献   

14.
The relationship between alder (Alnus japonica) distribution and surrounding land use in Kushiro Mire was spatially assessed using remotely sensed imagery. From the result, it was found out that the expanding area of alder trees in Kushiro Mire was affected by the agricultural land area in the upper course of the river basin and flooding in the lower course of the river. The soil sediments flowing into the Kushiro Mire from the agricultural land resulted in heavy sedimentation that favors the growth of alder trees. Consequently, the number and density of alder trees has increased. The future distribution of alder trees was predicted based on the mechanism of expansion of the alder-tree area in Kushiro Mire, and it was found that large vegetation areas in Kushiro Mire will be changed to areas with alder trees.  相似文献   

15.
In this paper, we aim to better understand the factors that contribute to the substantive performance of EIA systems in low and middle income countries. Substantive performance is defined as the extent to which the EIA process contributes to the EIA objectives for the long term, namely environmental protection or, even more ambitious, sustainable development. We have therefore developed a conceptual model in which we focus on the key actors in the EIA system, the proponent and the EIA authority and their level of ownership as a key capacity to measure their performance, and we distinguish procedural performance and some contextual factors. This conceptual model is then verified and refined for the EIA phase and the EIA follow-up phase (permitting, monitoring and enforcement) by means of 12 case studies from Ghana (four cases) and Georgia (eight cases), both lower–middle income countries. We observe that in most cases the level of substantive performance increases during the EIA phase but drops during the EIA follow-up phase, and as a result only five out of 12 operational cases are in compliance with permit conditions or national environmental standards. We conclude, firstly that ownership of the proponent is the most important factor explaining the level of substantive performance; the higher the proponent's level of ownership the higher the level of substantive performance. The influence of the EIA authority on substantive performance is limited. Secondly, the influence of procedural performance on substantive performance seems less important than expected in the EIA phase but more important during the EIA follow-up phase.In order to improve substantive performance we learned two lessons. Firstly, increasing the proponent's level of ownership seems obvious, but direct change is probably difficult. However, where international finance institutes are involved they can increase ownership. Despite the limited influence of the EIA authority, a proactive strategy of, for example, working together with international finance institutes has a slightly larger influence than a reactive strategy.  相似文献   

16.
The landscape-level and multiscale biodiversity monitoring program National Inventory of Landscapes in Sweden (NILS) was launched in 2003. NILS is conducted as a sample-based stratified inventory that acquires data across several spatial scales, which is accomplished by combining aerial photo interpretation with field inventory. A total of 631 sample units are distributed across the land base of Sweden, of which 20% are surveyed each year. By 2007 NILS completed the first 5-year inventory phase. As the reinventory in the second 5-year phase (2008?C2012) proceeds, experiences and insights accumulate and reflections are made on the setup and accomplishment of the monitoring scheme. In this article, the emphasis is placed on background, scope, objectives, design, and experiences of the NILS program. The main objective to collect data for and perform analyses of natural landscape changes, degree of anthropogenic impact, prerequisites for natural biological diversity and ecological processes at landscape scale. Different environmental conditions that can have direct or indirect effects on biological diversity are monitored. The program provides data for national and international policy and offers an infrastructure for other monitoring program and research projects. NILS has attracted significant national and international interest during its relatively short time of existence; the number of stakeholders and cooperation partners steadily increases. This is constructive and strengthens the incentive for the multiscale monitoring approach.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号