首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
Abstract

The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

2.
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.  相似文献   

3.
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.  相似文献   

4.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

5.
Catalytic oxidation is an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emission stream are oxidized with the help of a catalyst Design of catalytic systems for control of point source emissions is based on stream-specific characteristics and desired control efficiency. This paper discusses the key emission stream characteristics and VOC characteristics that affect the applicability of catalytic oxidation. The application of catalytic oxidation technology to four types of air emission sources is discussed: (1) groundwater stripping operations; (2) graphic arts facilities; (3) flexographic printing plants; and (4) latex monomer production. The characteristics of each of these emissions are discussed along with the catalytic technology used to control these emissions.  相似文献   

6.
Under the Clean Air Act Amendments, the United States Environmental Protection Agency is required to regulate emissions of 188 hazardous air pollutants. The EPA, Office of Air Quality Planning and Standards is currently conducting a National-scale Air Toxics Assessment with a goal to identify air toxics which are of greatest concern, in terms of contribution to population inhalation risk. The results will be used to set priorities for the collection of additional air toxics emissions and monitoring data. Expanded ambient air toxics monitoring will take the form of a national air toxics monitoring network. With all monitoring data, however, comes uncertainty in the form of environmental variability (spatial and temporal) and monitoring error (sample collection and laboratory analysis). With this in mind, existing data from the Urban Air Toxics Monitoring Program (UATMP) were analyzed to obtain a general understanding of these sources of variability and then provide recommendations for managing the data uncertainties of a national network. The results indicate that environmental variability, in particular temporal, comprises most of the overall variability observed in the UATMP data. However, at lower ambient levels (on the order of 0.1–0.5 ppbv or lower) environmental variability tends to dissipate and monitoring error takes over, most notably analytical error. Overall, the results suggest that common techniques in ambient air toxics monitoring for carbonyls and volatile organic compounds may satisfy many of the primary objectives of a national air toxics monitoring network.  相似文献   

7.
Intensive field investigations were conducted at the summit of Mount Tai in June 2006 to understand the effects of the local and regional sources on atmospheric volatile organic compounds (VOCs) distributions. A total of 60 samples were collected and determined by quantitative analytical methods. The concentrations of the total VOCs (TVOCs) observed in the air of Mount Tai were 6.95 ± 5.71 ppb. Aromatic hydrocarbons provided the largest contribution to TVOCs, followed by alkanes and halocarbons. High levels of halocarbons accounted for 20% of TVOCs due to emission from a PVC plant located at the foot of Mount Tai. Alkenes and cycloalkanes contributed little to the total VOCs. The day-and-night differences and day-to-day variations in the concentrations of four selected species were investigated and the effects of several factors such as meteorological parameters, sources and transport characteristics on them were discussed in details. A back trajectory analysis showed that relatively higher levels of VOCs were related to long-range transport of pollutants from polluted areas. The vertical motions of air masses also had a large impact on the variations of the levels of VOCs. The result of the variability–lifetime relationships of VOCs, which is used to estimate the remoteness of the sampling location, showed that Mount Tai represents intermediate conditions between remote sites and sites in the vicinity of sources.  相似文献   

8.
Air toxics emission inventories play an important role in air quality regulatory activities. Recently, Minnesota Pollution Control Agency (MPCA) staff compiled a comprehensive air toxics emission inventory for 1996. While acquiring data on the mass of emissions is a necessary first step, equally important is developing information on the potential toxicity of the emitted pollutants. To account for the toxicity of the pollutants in the emission inventory, inhalation health benchmarks for acute effects, chronic effects, and cancer were used to weight the mass of emissions. The 1996 Minnesota emissions inventory results were ranked by mass of emissions and by an index comprised of emissions divided by health benchmarks. The results show that six of eight pollutants ranked highest by toxicity were also the pollutants of concern indicated in environmental monitoring data and modeling data. Monitoring data and modeling results did not show high impacts of the other two pollutants that were identified by the toxicity-based emission ranking method. The biggest limitation in this method is the lack of health benchmark values for many pollutants. Despite uncertainties and limited information, this analysis provides useful information for further targeting pollutants and source categories for control.  相似文献   

9.
A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas. The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   

10.
The Clean Air Act identifies 189 hazardous air pollutants (HAPs), or "air toxics," associated with a wide range of adverse human health effects. The U.S. Environmental Protection Agency has conducted a modeling study with the Assessment System for Population Exposure Nationwide (ASPEN) to gain a greater understanding of the spatial distribution of concentrations of these HAPs resulting from contributions of multiple emission sources. The study estimates year 1990 long-term outdoor concentrations of 148 air toxics for each census tract in the continental United States, utilizing a Gaussian air dispersion modeling approach. Ratios of median national modeled concentrations to estimated emissions indicate that emission totals without consideration of emission source type can be a misleading indicator of air quality. The results also indicate priorities for improvements in modeling methodology and emissions identification. Model performance evaluation suggests a tendency for underprediction of observed concentrations, which is likely due, at least in part, to a number of limitations of the Gaussian modeling formulation. Emissions estimates for HAPs have a high degree of uncertainty and contribute to discrepancies between modeled and monitored concentration estimates. The model's ranking of concentrations among monitoring sites is reasonably good for most of the gaseous HAPs evaluated, with ranking accuracy ranging from 66 to 100%.  相似文献   

11.
A compression ignition engine is used for the study of the fuel (one reference and one hydrotreated) and the fuel/air equivalence ratio influence on the exhaust emissions of specific pollutants. Under the experimental conditions used, seven hydrocarbons, nine aldehydes and three organic acids are detected in the exhaust gas. No alcohols are detected under these conditions, indicating that these compounds are emitted only if they (or probably other oxygenated compounds) are introduced in the fuel. Fuel hydrotreatment decreases most of the exhaust pollutants, the four toxics and also the quantity of the ozone that could be formed from the exhaust gas. It also changes the composition of exhaust gas: it increases the proportion of methane, benzene, formaldehyde, acetaldehyde, acroleine, and propionic acid, while it decreases the proportion of all other pollutants detected. Fuel/air equivalence ratio also decreases most of the exhaust emissions, the emission of the total toxics and the quantity of the ozone that could be formed. It also changes the proportion of each pollutant in exhaust gas: the percentages of methane, benzene, acetone and acetic acid increase, while those of the other pollutants detected decrease. The majority of the specific pollutants detected corresponds to organic acids, followed by hydrocarbons and aldehydes.  相似文献   

12.
ABSTRACT

A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas.

The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   

13.
More than 13 years after publication of the first air quality laws in Portugal and more than 10 years after the publication of the respective emission limits, it seems appropriate to analyze the degree of compliance by the Portuguese manufacturing industry. Using the data from emission measurements made regularly by the Instituto de Soldadura e Qualidade, the only officially accredited laboratory according to standard ISO 17025, I analyzed a set of approximately 400 sources in terms of compliance with the emission limits regarding total suspended particulates, sulfur dioxide, nitrogen oxides, and volatile organic compounds. I evaluated compliance through a nondimensional parameter and plotted it versus the emission flow rate to derive conclusions: the results indicate that emission limits are generally met regarding sulfur dioxide and nitrogen oxides but not for the other pollutants considered in this study. However, noncompliance occurs mainly for very low emission flow rates, which suggests some alterations in the emission limits, which are being revised at the moment. These alterations will include the exemption of measurements in minor sources.  相似文献   

14.
Emission trading is a market-based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NO(x)) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three-dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NO(x) from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day-to-day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

15.
Abstract

Emission trading is a market‐based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NOx) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three‐dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NOx from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day‐to‐day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

16.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

17.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

18.
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.  相似文献   

19.
Candle composition is expected to influence the air pollutants emissions, possibly leading to important differences in the emissions of volatile organic compounds and polycyclic aromatic hydrocarbons. In this regard, the purity of the raw materials and additives used can play a key role. Consequently, in this work emission factors for some polycyclic aromatic hydrocarbons, aromatic species, short-chain aldehydes and particulate matter have been determined for container candles constituted by different paraffin waxes burning in a test chamber. It has been found that wax quality strongly influences the air pollutant emissions. These results could be used, at least at a first glance, to foresee the expected pollutant concentration in a given indoor environment with respect to health safety standards, while the test chamber used for performing the reported results could be useful to estimate the emission factors of any other candle in an easy-to-build standardised environment.  相似文献   

20.
Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号