首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effect of ozone in a chemical sludge disintegration process was evaluated. Sludge solution chemical oxygen demand (COD), total suspended solids (TSS) and settling were investigated in single and sequential processes. A significant influence of ozone dose on sludge disintegration was observed: ozone was utilised to degrade the soluble organic matter and to destroy cell surfaces and release the cell liquids. For a single ozonation step, we found an optimum ozone dose in the range of 0.008–0.013 g O3/g TSS to give the best COD and TSS removal efficiency. Disintegrated sludge was treated in a sequential process consisting of consecutive ozonation and bio-aeration (i.e. O3 + biological treatment). The tendency was dependent on accumulated ozone, treatment time and operational conditions. An accumulated ozone dose of 0.055 g O3/g TSS in two separate ozonation processes followed by biological treatments led to COD and TSS removal efficiency of 53 and 46.6%, respectively. The removal efficiency was improved by increasing aerobic treatment time and/or by mixing ozonated sludge with non-ozonated sludge. The settling ability of sludge was found to be fast at very low specific ozone doses. An observed tendency was the effect of ozone on cell disintegration and protein liberation. The use of sequential processes improved the settling tendency of sludge.  相似文献   

2.
Radiological hazards of TENORM in the wasted petroleum pipes   总被引:1,自引:0,他引:1  
Disposal petroleum pipes containing sludge and scale as a technically enhanced natural occurring radioactive material (TENORM) leads to internal and external radiation hazards and then a significant radiation dose to the workers. In order to contribute to a future waste management policy related to the presence of TENORM in the disposal sites of wasted petroleum pipes, scale and sludge as TENORM wastes are collected form these disposal pipes for radiometric analysis. These pipes are imported from onshore oilfields at south Sinai governorate, Egypt. The highest mean 226Ra and 228Ra concentrations of 519 and 50 kBq/kg respectively, were measured in scale samples. Sludge lies within the normal range of radium concentration. The average absorbed dose caused by the exposure to the wasted pipes equal to 4.09 μGy h−1 from sludge and 262 μGy h−1 from scale. This is much higher than the acceptable level of 0.059 μGy h−1. Due to radon inhalation, important radon related parameters are calculated which advantage in internal dose calculation. Fairly good correlation between real radium content and radon exhalation rate for sludge samples is obtained. The hazards from sludge come from its high emanation power for radon which equal to 3.83%. The obtained results demonstrate the need of screening oil residues for their radionuclide content in order to decide about their final disposal.  相似文献   

3.
Microalgae has been considered potential biofuel source from the last decade owing to its versatile perspectives such as excellent capability of CO2 capture and sequestration, water treatment, prolific growth rate and enormous energy content. Thus, energy research on microalgae is being harnessed to mitigate CO2 and meet future energy demands. This study investigated the bioenergy potential of native blue-green microalgae consortium as initial energy research on microalgae in Brunei Darussalam. The local species of microalgae were assembled from rainwater drains, the species were identified as Stigonematales sp. and physical properties were characterised. Sundried biomass with moisture content ranging from 6.5% to 7.37% was measured to be used to determine the net and gross calorific value and they were 7.98 MJ/kg-8.57 MJ/kg and 8.70 MJ/kg-9.45 MJ/kg, respectively. Besides that, the hydrogen content, ash content, volatile matter, and bulk density were also experimented and they were 2.56%-3.15%, 43.6%-36.71%, 57–38%-63.29% and 661.2 kg/m3-673.07 kg/m3, respectively. Apart from experimental values, other physical bioenergy parameters were simulated and they were biomass characteristic index 61,822.29 kg/m3-62,341.3 kg/m3, energy density 5.27 GJ/m3-5.76G J/m3 and fuel value index 86.19–88.54. With these experimental results, microalgae manifested itself a potential source of biofuel feedstock for heat and electricity generation, a key tool to bring down the escalated atmospheric greenhouse gases and an alternation for fossil fuel.  相似文献   

4.
An incubation experiment was performed to study the effect of sewage sludge on microbial respiration and nutrient mineralization in a sandy soil as an indication of its effects on soil biological properties and nutrient transformation. Sewage sludge was amended with a sandy soil at 0, 25, 50, 150 and 350 g kg−1 fresh weight. An increase in the sludge amendment rate caused an increase in both pH and electrical conductivity (EC). However, pH decreased while EC increased and then decreased along the incubation time. Nevertheless salinity and heavy metal contents of the soil sludge mixture were all within the safety guidelines. Soluble NH4+, NO32− and PO32− increased after amending the soil with sewage sludge, but increasing the application rate to 350 g kg−1 of sludge decreased the N and P mineralization efficiency and created an adverse effect on nitrification. The daily CO2 evolution pattern was the same in all treatments that CO2 evolution increased initially and then decreased till the end of the incubation period. All the treatments had peak CO2 evolution at day 7, except for the soil amended with 350 g kg−1 of sludge which had peak CO2 evolution at day 2. Similarly, the percentage of C-mineralization decreased with an increase in sludge amendment rate. The present experiment indicated that an application rate of 50–150 g kg−1 sludge for sandy soil would have the optimal beneficial effect on the soil in terms of microbial activity and nutrient transformation.  相似文献   

5.
Scavenging by the seabed and by sedimentary particles in the deep ocean may have a significant effect on the removal of artificial radionuclides released to the water column as a result of radioactive waste disposal operations. Biological activity in the upper layers of the sediment column will enhance the rate of removal for those particle-reactive radionuclides with a short half-life relative to the turnover time of the upper mixed layer. For longer-lived radionuclides the rate of sediment accumulation will determine the ultimate rate of removal.The rate of sediment accumulation and extent of biological mixing of deep-sea sediment from three areas of the NE Atlantic Ocean have been investigated using 14C and 210Pb data. Treatment of the radiocarbon with a simple box model provided estimates of sedimentation rate (ω), mixed layer depth (L), mixed layer age (TML) and the age of material arriving at the surface (T0), which were broadly similar to previously published values from other ocean basins. Box cores from the Iberia Abyssal Plain, Madeira Abyssal Plain and from the NEA low-level radioactive waste dumpsite yielded sedimentation rates in the range 0.8 to 2.2 cm ky?1 over the upper 16–25 cm. Continuous particle mixing appears to be taking place to a depth of 4 to 6 cm below the present sediment-water interface. Closely spaced vertical sampling of core 161-2 for 210Pb allowed a biodiffusion coefficient (DB) to be calculated (4 × 10?9cm2s?1), treating bioturbations as a diffusive term and sedimentations as an advective term in a simple mathematical model. In general, values of DB in deep ocean sediments fall within the range 1–10 × 10?9cm2s?1, two orders of magnitude lower than nearshore values. From a review of published data it is concluded that biological mixing takes place extensively in the deep ocean; it appears to be fairly constant on a basin-wide scale and amenable to incorporation in mathematical models of radionuclide behaviour in the water column.  相似文献   

6.
Ultrafiltration membranes were prepared using cellulose acetate (CA) as a polymer, LiCl and CaCl2 as porogens and methyl-(S)-lactate as a solvent. CA, methyl lactate and the porogens used in this work are obtained from renewable resources; they are biodegradable, non-toxic and non-volatile organic compounds. Flat sheet ultrafiltration membranes were prepared by the phase inversion technique. A molecular weight cut-off between 15 and 35 kDa (polyethylene glycol) and pure water permeability between 13 and 177 litres h? 1m? 2 bar? 1 were obtained. These parameters are in the ideal range for water treatment industry. Improvement of pollutant degree and ecotoxicity of the process was evaluated by ‘green’ metrics by the P (pollutants, persistent and bioaccumulative) and E (ecotoxicity) parameters. Both of these variables were recorded as zero using our method. This study represents a step ahead towards the production of ultrafiltration polymeric membranes by a ‘greener’ process than current methods.  相似文献   

7.
The comparative acute and chronic toxicities of municipal, industrial, coal-fired power plant, and synthetic fuel solid waste leachates to the aquatic invertebrate Daphnia magna were determined. Seventeen leachates were laboratory-derived by extraction with 0.5 N acetic acid, and one, an arsenic-contaminated groundwater, was naturally derived. The acute toxicity 48-h LC50 estimates (concentrations of the test materials that killed 50% of the test organisms in 48 h) ranged from 0.0005% for a dye waste leachate to > 100% (i.e., undiluted) for a coal gasification waste leachate. The most toxic leachates were derived from a dye waste, a plater's waste, and the arsenic-contaminated groundwater, and the least toxic were from a soybean process cake waste and a coal gasification waste. Of the 16 leachates used in the 28 day chronic toxicity tests, only the arsenic-contaminated groundwater and a municipal sewage sludge significantly affected D. magna reproduction. The former material at 1.0% concentration and the sludge at 0.1% caused about an 88% reduction in the numbers of young produced by exposed females compared with controls. Generally, the industrial waste leachates were more toxic than those from the power plant and synthetic fuel wastes. Because its presence in the test materials interfered with interpretation of the results, acetic acid may not be an appropriate extraction medium for preparation of leachates.  相似文献   

8.
The production of energy crops in Germany is a growing agronomic sector and is expected to occupy a substantial share of farmland in the near future. At the same time, there are concerns that energy crops might cause increased nitrogen pollution of soil water, surface water and groundwater. Therefore, the Federal State of Saxony, Germany, funded a study on potential effects of an intensified cultivation of energy crops. In frame of this study, we used the Web GIS-based model STOFFBILANZ to simulate N leaching from the rooting zone and N loads of surface water for a reference scenario and an energy crop scenario. For the reference scenario, we used data representing the crop cultivation for the year 2005 at municipality level. We found that the total loads for N leaching from the rooting zone of cropland are highest for the loess region (8,067 t year?1), followed by mountainous region (6,797 t year?1) and lowland (5,443 t year?1). However, highest N fluxes in the leachate from rooting zones have been simulated for lowland (40.6 kg ha?1 year?1) and mountainous region (37.1 kg ha?1 year?1), while nitrate concentrations of leachate were highest for the lowland (101.8 mg l?1). In terms of diffuse N input into surface water, the mountainous region is the most important source area (total N load 6,380 t year?1, flux 34.6 kg ha?1 year?1). Retention by in-stream processes accounts for 15 % (3,784 t year?1) of the total N load leaving the study area (25,136 t year?1). In the 2020 energy crop scenario, shares of rape and silage maize (id., ensiled corn) were limited for each municipality to a maximum of 25 and 33 %, respectively. The conversion of grasslands to crop farming was not allowed. Under these conditions, we found slight to substantial reductions of nitrogen loads for leachate from the rooting zone and for surface waters. The simulated reduction depends strongly on local conditions. Only small reductions (ca. 4–8 %) were found for the lowlands and mountainous regions of Saxony, while reductions for the loess region were substantial (ca. 22 %). A major outcome of our study is that the cultivation of energy crops might reduce N loss if certain preconditions are assumed, for example, without conversion of grasslands to crop farming. However, effects might vary widely depending on local conditions.  相似文献   

9.
Disposal of sewage sludge from waste water treatment plants is a serious environmental problem of increasing magnitude. Waste water treatment generates as much as 70 g of dry solids per capita per day. Although one of the disposal solutions for this waste is through incineration, still almost 30% of sludge solids remain as ash. This paper presents results related to reuse of sewage sludge ash in concrete. The sludge was characterised for chemical composition (X-ray flourescence analysis), crystalline phases (X-ray diffraction analysis) and pozzolanic activity. The effects of incineration on crystal phases of the dry sludge were investigated. Two water/cement (W/C) ratios (0.55 and 0.45) and three sludge ash percentages (5%, 10% and 20%) per cement mass were used as filler. The mechanical performance of sewage sludge ash concrete (SSAC) at different curing ages (3, 7, 28 and 90 days) was assessed by means of mechanical tests and capillary water absorption. Results show that sewage sludge ash leads to a reduction in density and mechanical strength and to an increase in capillary water absorption. Results also show that SSAC with 20% of sewage sludge ash and W/C = 0.45 has a 28 day compressive strength of almost 30 MPa. SSAC with a sludge ash contents of 5% and 10% has the same capillary water absorption coefficient as the control concrete; as for the concrete mixtures with 20% sludge ash content, the capillary water absorption is higher but in line with C20/25 strength class concretes performance.  相似文献   

10.
Radium-226 present in rock phosphate is carried to CaCO3, the main process waste sludge of the fertilizer industry. Disposal of the sludge in the environment enhances the radiation background in the area. Two states of adherence of radium in the sludge have been identified, one loosely bound and the other chemically exchanged. The loosely bound fraction accounts for nearly 40% of the total activity, as demonstrated by leaching studies. Laboratory experiments show that activity leach-out by infiltration of water through the sludge is low. Lateral seepage is found to cause extensive areal contamination due to dispersal of suspended solids in the vicinity of the disposal area. The rate of emanation of radon from the sludge is found to be high, a factor of 10 over the normal background emanation rate. The radiation field in the waste disposal area also shows enhancement, with levels 4–6 times higher than natural background.  相似文献   

11.
Mullite-based glass-ceramics were produced from aluminium hydroxide sludge resulting from the anodisation process and waste glasses. Phase development for crystallisation of amorphous mullite was investigated between 900°C and 1200°C. The kinetic parameters such as activation energy of crystallisation and Avrami exponent for the samples were evaluated from differential thermal analysis curves using various heating rates (5–30°C) and particle size ranges ( < 45, 80–125 and 355–400 μm). The growth morphology parameters ‘n’ and ‘m’ are in the range of 2.5–5.4 and 1.5–4.4, respectively, indicating that bulk nucleation is dominant in mullite crystallisation followed by two- to three-dimensional growth of mullite crystals controlled by diffusion from a varying number of nuclei.  相似文献   

12.
Abandoned peat extraction areas are continuous emitters of GHGs; hence, abandonment of peat extraction areas should immediately be followed by conversion to an appropriate after-use. Our primary aim was to clarify the atmospheric impact of reed canary grass (RCG, Phalaris arundinacea L.) cultivation on an abandoned peat extraction area and to compare it to other after-treatment alternatives. We performed a life-cycle assessment for five different after-use options for a drained organic soil withdrawn from peat extraction: (I) bare peat soil (no management), (II) non-fertilised Phalaris cultivation, (III) fertilised Phalaris cultivation, (IV) afforestation, and (V) rewetting. Our results showed that on average the non-fertilised and fertilised Phalaris alternatives had a cooling effect on the atmosphere (?10,837 and ?477 kg CO2-eq ha?1 year?1, respectively), whereas afforestation, rewetting, and no-management alternatives contributed to global warming (9,511, 8,195, and 2,529 kg CO2-eq ha?1 year?1, respectively). The main components influencing the global warming potential of different after-use alternatives were site GHG emissions, carbon assimilation by plants, and emissions from combustion, while management-related emissions played a relatively minor role. The results of this study indicate that, from the perspective of atmospheric impact, the most suitable after-use option for an abandoned peat extraction area is cultivation of RCG.  相似文献   

13.
Efficient use of energy helps to achieve increased production and productivity and contributes to the economy, profitability, and competitiveness of agricultural sustainability of rural communities. Evaluation of wheat and barley production systems in view of energy balance was conducted in Khorasan Razavi Province, Iran. Data were collected by using a face-to-face questionnaire from wheat and barley fields in 2011. Results revealed that total energy input for wheat was 51,040 MJ ha?1 and for barley 44,866; in wheat and barley systems, renewable energy was consumed by 25.43 and 23.53 %, while non-renewable energy was consumed by 74.57 and 76.47 %, respectively. Energy use efficiency, energy productivity, and net energy were 1.7 kg MJ?1, 0.088 kg MJ?1, and 35,987 MJ ha?1 in wheat system and 1.83 kg MJ?1, 0.092 kg MJ?1, and 33,833 MJ ha?1 in barley system, respectively. Energy intensiveness in wheat fields (61.84 MJ $?1) was higher than in barley fields (58.71 MJ $?1). Also, benefit-to-cost ratio in wheat system (1.59) was higher than in barley system (1.35). In general, production in barley fields was more sustainable than wheat production because, in view of ecological indices such as amount of energy use and renewable energy consumption, it was more environment-friendly production.  相似文献   

14.
The adsorptive potential of activated carbon prepared by chemical activation of Cocoa pod husk (CPHAA) to remove Congo red (CR) dye from its aqueous solution was investigated in this study. CPHAA was characterised using Energy Dispersive X-Ray, Scanning Electron Micrograph and Fourier Transform Infrared Spectroscopy techniques. The effects of contact time, initial dye concentration, pH and solution temperature were studied. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, with maximum monolayer adsorption capacity of 43.67 mg/g. The kinetic data were fitted to Pseudo-first-order, Pseudo-second-order, Elovich and Intraparticle diffusion models; the pseudo-second-order kinetic model provided the best correlation. Thermodynamic parameters such as standard enthalpy (ΔHo), standard entropy (ΔSo) and standard free energy (ΔGo) were evaluated. The thermodynamic study showed that the process is endothermic, spontaneous and feasible. The mean free energy of adsorption shows that the mechanism is by physisorption. CPHAA was found to be an effective adsorbent for the removal of CR dye from aqueous solution.  相似文献   

15.
Recent developments in wastewater treatment are resulting in the production of substantial amounts of chemically [Ca(OH)2 and Al2(SO4)3·H2O] treated sludges in need of further treatment before disposal. Although a seemingly suitable method, an unfavorable pH and low volatile solids content constitute serious problems for composting. Hence, an investigation was made of the feasibility of window composting Ca(OH)2 (lime) precipitated sludge (approximately 25% solids) when mixed with a bulking agent. Bulking agents tried were the paper fraction of municipal refuse and chipped tree and shrub trimmings. Both bulking agents were tried in their raw and in their composted states. Initial mixing was by way of a specially designed hammermill, and subsequent mixing was done manually. Compostability was measured by rate and extent of the temperature rise and fall and by destruction of volatile solids. According to the results, lime exerted no inhibitory influence on the composting process. However, the high ratio of biologically inert material to volatile solids resulted in a shortage of nutrients for the bacteria. Consequently, temperatures attained were neither sufficiently high nor of long enough duration to ensure the pathogen destruction required for public health safety.  相似文献   

16.
Nitrogen fertilization (N) is commonly known as a main source of direct nitrous oxide (N2O) emission from agricultural soils. An area of 38 % of the total land surface of Poland was covered by agricultural soils in 2009. In this paper, we aimed at analyzing data regarding the land exploitation for 13 selected subareas of Poland between 1960 and 2009. Seven out of the 13 subareas studied are located in the West (area A), and six subareas are located in southeast of Poland (area B). The total area covered by large farms (>20 ha) differed largely, between area A (10.6 %) and area B (0.9 %) in 2009. Both areas varied in terms of the amount of fertilizers used annually, average crop yield and crop structure. Average direct emissions of N2O from agricultural soils were 1.66 ± 0.09 kg N2O–N ha?1 a?1 for area A, 1.39 ± 0.07 kg N2O–N ha?1 a?1 for area B and 1.46 ± 0.07 kg N2O–N ha?1 a?1 for the whole country between 1960 and 2009.  相似文献   

17.
Stringent environmental policies and the ever increasing demand for energy have triggered interest in novel combustion technologies that use alternative fuels as energy sources. Of these, pilot-ignited compressed natural gas (CNG) engines that employ small biodiesel pilot to ignite a premixed natural gas–air mixture have received considerable attention. This paper discusses the effect of mixing chamber venturi, injection timing, compression ratio and exhaust gas recirculation (EGR) on the performance of dual-fuel engine operated on biodiesel derived from honge oil and is called honge oil methyl ester (HOME) and CNG. The proposed study mainly focuses on the manifold induction of CNG along with HOME injection. However, CNG can also be injected using port or direct gas injector (Lakshmanan and Nagarajan 2010, Energy 35, pp. 3172–3178). The future study will involve these methods of CNG injection. From this study, it is concluded that an advanced injection timing and an increased compression ratio resulted in increased brake thermal efficiency and reduced smoke, hydrocarbons and carbon monoxide emissions. However, nitrogen oxides (NO x ) emission increased significantly. The increased NO x emission was effectively reduced with EGR method. A mixing chamber venturi of 3 mm size, injection timing of 27° before top dead centre (BTDC), compression ratio of 17.5 and 10% EGR were found to be optimum for the modified compression ignition engine that was operated on CNG–HOME dual-fuel mode.  相似文献   

18.
Improper disposal of post-consumer Polythylene Terephthalate (PET) bottles constitutes an eyesore to the environmental landscape and gives rise to numerous environmental and health-related nuisances. These problems impact negatively on the flourishing tourism industry in Mauritius. The present study was therefore undertaken to determine a sustainable disposal method among four selected disposal alternatives of post-consumer PET bottles in Mauritius. The disposal scenarios investigated were: 100 % landfilling (scenario 1); 75 % incineration with energy recovery and 25 % landfilling (scenario 2); 40 % flake production (partial recycling) and 60 % landfilling (scenario 3); and 75 % flake production and 25 % landfilling (scenario 4). Environmental impacts of the disposal alternatives were determined using ISO standardized life cycle assessment (LCA) and the SimaPro 7.1 software. Cost-effectiveness was determined using Life cycle costing (LCC) as described by the recent Code of Practice on LCC. An excel-based model was constructed to calculate the various costs. Social impacts were evaluated using Social Life Cycle Assessment (S-LCA) based on the UNEP/SETAC Guidelines for Social Life Cycle Assessment. For this purpose, a new and simple social life cycle impact assessment method was developed for aggregating inventory results. Finally, Life Cycle Sustainability Assessment (LCSA) was conducted to conclude the sustainable disposal route of post-consumer PET bottles in Mauritius. The methodology proposed to work out LCSA was to combine the three assessment tools: LCA, LCC and S-LCA using the Analytical Hierarchy Process. The results indicated that scenario 4 was the sustainable disposal method of post-consumer PET bottles. Scenario 1 was found to be the worst scenario.  相似文献   

19.
ABSTRACT

Renewable and sustainable fuels for diesel engine applications provide energy protection, overseas exchange saving and address atmospheric and socio-economic concerns. This study presents the investigational work carried out on a single cylinder, four-stroke, direct injection diesel engine operated in dual fuel (DF) mode using renewable and sustainable fuels. In the first phase, a Y-shaped mixing chamber or venture was developed with varied angle facility for gas entry at 30°, 45° and 60°, respectively, to enable homogeneous air and gas mixing. Further effect of different gas and air mixture entry on the DF engine performance was studied. In the next phase of the work, hydrogen flow rate influence on the combustion and emission characteristics of a compression ignition (CI) engine operated in DF mode using diesel, neem oil methyl ester (NeOME) and producer gas has been investigated. During experimentation, hydrogen was mixed in different proportions varied from 3 to 12 l/min (lpm) in step of 3 lpm along with air-producer gas and the mixtures were directly inducted into engine cylinder during suction stroke. Experimental investigation showed that 45° Y-shaped mixing chamber resulted in improved performance with acceptable emission levels. Further, it is observed that investigation showed that at maximum operating conditions and hydrogen flow rate of 9 lpm, Diesel–producer gas and NeOME–producer gas combination showed increased thermal efficiency by 13.2% and 3.8%, respectively, compared to the DF operation without hydrogen addition. Further, it is noticed that hydrogen-enriched producer gas lowers the power derating by 5–10% and increases nitric oxide (NOx) emissions. However, increased hydrogen addition beyond the 12 lpm leads to sever knocking.

Abbreviations: NeOME: Neem oil methyl ester; BTE: brake thermal efficiency; CI: compression ignition; ITE: indicated thermal efficiency; PG: producer gas; CA: crank angle; K: Kelvin; BP: brake power; IP: indicated power; H2: hydrogen; HC: unburnt hydrocarbon; CO: carbon dioxide; CO2: carbon dioxide; NOx: nitric oxide; HRR: heat release rate; %: percentage; PPM: parts per million; CMFIS: conventional mechanical fuel injection system.  相似文献   

20.
In order to contribute to a future waste management policy related to the presence of technologically enhanced natural occurring radioactive material (TENORM) in the Brazilian petroleum industry, the present work presents the chemical composition and the 226Ra and 228Ra content of sludge and scales generated during the offshore E and P petroleum activities in the Campos Basin, the primary offshore oil production region in Brazil.The 226Ra and 228Ra content on 36 sludge and scales samples were determined by gamma-spectrometry. Based on X-ray diffractometry results, a chemical analysis schema for these samples was developed. The results have shown that scales are 75% barium and strontium sulfates, with a mean 226Ra and 228Ra content of 106 kBq kg−1 and 78 kBq kg−1, respectively. On the other hand, sludge samples have a much more complex chemical composition than the scales. The 226Ra and 228Ra content in sludge also varies much more than the content observed in the scales samples and ranged from 0.36 to 367 kBq kg−1 and 0.25 to 343 kBq kg−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号