首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   

2.
Conservation scientists are increasingly interested in the question of how extinction prunes the tree of life. This question is particularly important for Australian freshwater fishes because there is a broad mix of ∼300 old and young species, many of which are severely threatened. We used a complete species-level phylogeny of Australian freshwater fishes to examine phylogenetic nonrandomness of extinction risk. We computed the potential loss of phylogenetic diversity by simulating extinction across the tree under a pattern weighted based on International Union for Conservation of Nature extinction risk category and compared this loss to projected diversity loss under a random null model of extinction. Finally, we calculated EDGE (evolutionary distinctiveness, global endangerment) scores for 251 freshwater and 60 brackish species and compiled a list of high-priority species for conservation actions based on their extinction risk and evolutionary uniqueness. Extinction risk was not random and was clustered in both diversity cradles (recently diversifying, species-rich clades, such as Galaxiidae and Percichthyidae) and museums (older, species-poor groups, such as freshwater chondrichthyans). Clustered extinction made little difference to the average expected loss of phylogenetic diversity. However, the upper bound of loss was higher under a selective model of extinction, particularly when the counts of species lost were low. Thus, the loss of highly threatened species would diminish the tree of life more than a null model of randomly distributed extinction.  High priority species included both widely recognized and charismatic ones, such as the Queensland lungfish (Neoceratodus forsteri), river sharks, and freshwater sawfishes, and lesser-known species that receive less public attention, including the salamanderfish (Lepidogalaxias salamandroides), cave gudgeons, and many galaxiids, rainbowfishes, and pygmy perches.  相似文献   

3.
To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core‐area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide‐ranging species and species with several close relatives. Small, medium‐sized, and data‐deficient species faced extinction from inadequate protection in PAs relative to wide‐ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land‐use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.  相似文献   

4.
5.
Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost‐effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio‐diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.  相似文献   

6.
More than half of the world's 18 penguin species are declining. We, the Steering Committee of the International Union for Conservation of Nature Species Survival Commission Penguin Specialist Group, determined that the penguin species in most critical need of conservation action are African penguin (Spheniscus demersus), Galápagos penguin (Spheniscus mendiculus), and Yellow-eyed penguin (Megadyptes antipodes). Due to small or rapidly declining populations, these species require immediate scientific collaboration and policy intervention. We also used a pairwise-ranking approach to prioritize research and conservation needs for all penguins. Among the 12 cross-taxa research areas we identified, we ranked quantifying population trends, estimating demographic rates, forecasting environmental patterns of change, and improving the knowledge of fisheries interactions as the highest priorities. The highest ranked conservation needs were to enhance marine spatial planning, improve stakeholder engagement, and develop disaster-management and species-specific action plans. We concurred that, to improve the translation of science into effective conservation for penguins, the scientific community and funding bodies must recognize the importance of and support long-term research; research on and conservation of penguins must expand its focus to include the nonbreeding season and juvenile stage; marine reserves must be designed at ecologically appropriate spatial and temporal scales; and communication between scientists and decision makers must be improved with the help of individual scientists and interdisciplinary working groups.  相似文献   

7.
Conserving freshwater habitats and their biodiversity in the Amazon Basin is a growing challenge in the face of rapid anthropogenic changes. We used the most comprehensive fish-occurrence database available (2355 valid species; 21,248 sampling points) and 3 ecological criteria (irreplaceability, representativeness, and vulnerability) to identify biodiversity hotspots based on 6 conservation templates (3 proactive, 1 reactive, 1 representative, and 1 balanced) to provide a set of alternative planning solutions for freshwater fish protection in the Amazon Basin. We identified empirically for each template the 17% of sub-basins that should be conserved and performed a prioritization analysis by identifying current and future (2050) threats (i.e., degree of deforestation and habitat fragmentation by dams). Two of our 3 proactive templates had around 65% of their surface covered by protected areas; high levels of irreplaceability (60% of endemics) and representativeness (71% of the Amazonian fish fauna); and low current and future vulnerability. These 2 templates, then, seemed more robust for conservation prioritization. The future of the selected sub-basins in these 2 proactive templates is not immediately threatened by human activities, and these sub-basins host the largest part of Amazonian biodiversity. They could easily be conserved if no additional threats occur between now and 2050.  相似文献   

8.
The optimal design of reserve networks and fisheries closures depends on species occurrence information and knowledge of how anthropogenic impacts interact with the species concerned. However, challenges in surveying mobile and cryptic species over adequate spatial and temporal scales can mask the importance of particular habitats, leading to uncertainty about which areas to protect to optimize conservation efforts. We investigated how telemetry-derived locations can help guide the scale and timing of fisheries closures with the aim of reducing threatened species bycatch. Forty juvenile speartooth sharks (Glyphis glyphis) were monitored over 22 months with implanted acoustic transmitters and an array of hydrophone receivers. Using the decision-support tool Marxan, we formulated a permanent fisheries closure that prioritized areas used more frequently by tagged sharks and considered areas perceived as having high value to fisheries. To explore how the size of the permanent closure compared with an alternative set of time-area closures (i.e., where different areas were closed to fishing at different times of year), we used a cluster analysis to group months that had similar arrangements of selected planning units (informed by shark movements during that month) into 2 time-area closures. Sharks were consistent in their timing and direction of migratory movements, but the number of tagged sharks made a big difference in the placement of the permanent closure; 30 individuals were needed to capture behavioral heterogeneity. The dry-season (May–January) and wet-season (February–April) time-area closures opened 20% and 25% more planning units to fishing, respectively, compared with the permanent closure with boundaries fixed in space and time. Our results show that telemetry has the potential to inform and improve spatial management of mobile species and that the temporal component of tracking data can be incorporated into prioritizations to reduce possible impacts of spatial closures on established fisheries.  相似文献   

9.
Policies for conservation outside protected areas, such as those designed to address the decline in Australian mammals, will not result in net improvements unless they address barriers to proenvironmental behavior. We used a mixed‐methods approach to explore potential value‐action gaps (disconnects between values and subsequent action) for small mammal conservation behaviors among pastoralists in dryland Australia. Using semistructured surveys and open‐ended interviews (n = 43), we explored values toward small mammals; uptake of a range of current and intended actions that may provide benefit to small mammals; and potential perceived barriers to their uptake. Pastoralists assigned great conservation value to small mammals; over 80% (n = 36) agreed to strongly agreed that small mammals on their property were important. These values did not translate into stated willingness to engage in voluntary cessation of wild‐dog control (r2 = 0.187, p = 0.142, n = 43). However, assigning great conservation value to small mammals was strongly related to stated voluntary willingness to engage in the proenvironmental behavior most likely to result in benefits to small mammals: cat and fox control (r2 = 0.558, p = 0.000, n = 43). There was no significant difference between stated voluntarily and incentivized willingness to engage in cat and fox control (p = 0.862, n = 43). The high levels of willingness to engage in voluntary cat and fox control highlight a potential entry point for addressing Australia's mammal declines because the engagement of pastoralists in conservation programs targeting cat and fox control is unlikely to be prevented by attitudinal constraints. Qualitative data suggest there is likely a subpopulation of pastoralists who value small mammals but do not wish to engage in formal conservation programs due to relational barriers with potential implementers. A long‐term commitment to engagement with pastoralists by implementers will thus be necessary for conservation success. On‐property cat and fox control programs that build and leverage trust, shared goals, collaboration, and shared learning experiences between stakeholders and that explicitly recognize the complexity of small mammal dynamics and the property‐level ecological knowledge of pastoralists are more likely to gain traction.  相似文献   

10.
S. Piraino  G. Fanelli  F. Boero 《Marine Biology》2002,140(5):1067-1074
The structure and organisation of aquatic communities, moulded in each environment by combinations of abiotic factors, recruitment and productivity rates, rely upon a network of both pairwise and transitive interactions among organisms. In many cases, a few strong interactors drive basic ecological processes by playing a leading role in channelling the available resources. Among these, keystone species may control the outputs of local biodiversity through large indirect effects, disproportionately large relative to their abundance. Functional roles are not fixed labels, and species interactions have variable outputs in both time and space: also, in spite of a growing literature on species interactions, terminology is often poorly applied. This leads to the loss of the informative value of concepts, like the keystone species, which might represent useful trade-offs between science and environmental politics. Species' roles are often used to set taxonomic conservation priorities, although this might even be regarded as unethical, ecologically wrong, or in disregard of the evolutionary meaning of species coexistence and interaction. A re-assessment of species' roles is given here, attempting to highlight their limits and applicability. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-001-0769-2.  相似文献   

11.
The recognition that growing proportions of species worldwide are endangered has led to the development of comparative analyses to elucidate why some species are more prone to extinction than others. Understanding factors and patterns of species vulnerability might provide an opportunity to develop proactive conservation strategies. Such comparative analyses are of special concern at national scales because this is the scale at which most conservation initiatives take place. We applied powerful ensemble learning models to test for biological correlates of the risk of decline among the Bolivian mammals to understand species vulnerability at a national scale and to predict the population trend for poorly known species. Risk of decline was nonrandomly distributed: higher proportions of large‐sized taxa were under decline, whereas small‐sized taxa were less vulnerable. Body mass, mode of life (i.e., aquatic, terrestrial, volant), geographic range size, litter size, home range, niche specialization, and reproductive potential were strongly associated with species vulnerability. Moreover, we found interacting and nonlinear effects of key traits on the risk of decline of mammals at a national scale. Our model predicted 35 data‐deficient species in decline on the basis of their biological vulnerability, which should receive more attention in order to prevent their decline. Our results highlight the relevance of comparative analysis at relatively narrow geographical scales, reveal previously unknown factors related to species vulnerability, and offer species‐by‐species outcomes that can be used to identify targets for conservation, especially for insufficiently known species. Predección y Definición de Prioridades de Conservación para Mamíferos de Bolivia con Base en Correlaciones Biológicas del Riesgo de Declinación  相似文献   

12.
For conservation science to effectively inform management, research must focus on creating the scientific knowledge required to solve conservation problems. We identified research questions that, if answered, would increase the effectiveness of conservation and natural resource management practice and policy in Oceania's small‐island developing states. We asked conservation professionals from academia, governmental, and nongovernmental organizations across the region to propose such questions and then identify which were of high priority in an online survey. We compared the high‐priority questions with research questions identified globally and for other regions. Of 270 questions proposed by respondents, 38 were considered high priority, including: What are the highest priority areas for conservation in the face of increasing resource demand and climate change? How should marine protected areas be networked to account for connectivity and climate change? What are the most effective fisheries management policies that contribute to sustainable coral reef fisheries? High‐priority questions related to the particular challenges of undertaking conservation on small‐island developing states and the need for a research agenda that is responsive to the sociocultural context of Oceania. Research priorities for Oceania relative to elsewhere were broadly similar but differed in specific issues relevant to particular conservation contexts. These differences emphasize the importance of involving local practitioners in the identification of research priorities. Priorities were reasonably well aligned among sectoral groups. Only a few questions were widely considered answered, which may indicate a smaller‐than‐expected knowledge‐action gap. We believe these questions can be used to strengthen research collaborations between scientists and practitioners working to further conservation and natural resource management in this region.  相似文献   

13.
Local rural and indigenous communities have assumed increasing responsibility for conservation within and between areas buffering the impacts of agricultural or resource‐extraction zones and protected areas. Empowering local communities as central partners in conservation and climate‐change mitigation has allowed many people to gain access to land and citizenship rights but has provided limited improvements in access to social services and economic opportunities even as expectation about their role as environmental stewards grows. These expectations, however, are inconsistent with reality. We conducted multiple field studies in Brazil since the mid‐1980s to illustrate the discrepancies between conservation programs and local conditions and expectations. We suggest that public policies and conservation programs should not delegate responsibility for managing protected areas to local and indigenous communities without considering local needs and expectations and locals’ attitudes toward conservation. In other words, behavior that maintains or improves the environment should not be treated as traditional based on the expectations of outsiders. Framing local populations as traditional environmentalists creates contradictions and frustrations for local populations and for conservation professionals and policy makers.  相似文献   

14.
15.
In most protected areas of the Indian Himalayan region site/habitat characteristics, community diversity and distribution pattern, vegetation composition (richness of native and endemic species), structural patterns, economic importance of forest communities and community priorities have rarely been studied. Therefore, the present study has focused on these in the buffer zone of Nanda Devi Biosphere Reserve. Seventy-six woody species (trees: 24; shrubs: 52) and 13 forest communities have been recorded between 2300–3800 m asl. Tree density ranged from 533–1220 ind ha-1, tree basal area from 14.68-80.28 m2ha-1 and shrub density from 1490–6695 ind ha-1. Mean density of trees was significantly lower in temperate forests in comparison to subalpine forests. Richness of trees ranged from 3–18 and shrubs from 5–29. Species diversity (H') of trees ranged from 0.45-2.08 and shrubs from 0.90-3.14. In the temperate zone, species richness and altitude had significant positive correlations whereas in the subalpine zone the two variables were negatively correlated. The native species were high in the area (> 65% species) and in communities (> 70% species), and was highest for the Picea smithiana-Pinus wallichiana mixed community, whereas the maximum numbers of natives and endemic species were recorded in the Pinus wallichiana community. The density and richness of non-natives were found to be significantly lower in comparison to the natives. Economic importance and conservation value of the communities were assessed and communities prioritized. Monitoring of the identified habitats, species, populations and communities, and development of appropriate strategies for their conservation and management are suggested.  相似文献   

16.
Invasive rats are one of the world's most successful animal groups that cause native species extinctions and ecosystem change, particularly on islands. On large islands, rat eradication is often impossible and population control, defined as the local limitation of rat abundance, is now routinely performed on many of the world's islands as an alternative management tool. However, a synthesis of the motivations, techniques, costs, and outcomes of such rat‐control projects is lacking. We reviewed the literature, searched relevant websites, and conducted a survey via a questionnaire to synthesize the available information on rat‐control projects in island natural areas worldwide to improve rat management and native species conservation. Data were collected from 136 projects conducted over the last 40 years; most were located in Australasia (46%) and the tropical Pacific (25%) in forest ecosystems (65%) and coastal strands (22%). Most of the projects targeted Rattus rattus and most (82%) were aimed at protecting birds and endangered ecosystems. Poisoning (35%) and a combination of trapping and poisoning (42%) were the most common methods. Poisoning allows for treatment of larger areas, and poison projects generally last longer than trapping projects. Second‐generation anticoagulants (mainly brodifacoum and bromadiolone) were used most often. The median annual cost for rat‐control projects was US$17,262 or US$227/ha. Median project duration was 4 years. For 58% of the projects, rat population reduction was reported, and 51% of projects showed evidence of positive effects on biodiversity. Our data were from few countries, revealing the need to expand rat‐control distribution especially in some biodiversity hotspots. Improvement in control methods is needed as is regular monitoring to assess short‐ and long‐term effectiveness of rat‐control.  相似文献   

17.
New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one‐third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration.  相似文献   

18.
Assessing Threats and Setting Priorities for Conservation   总被引:5,自引:0,他引:5  
  相似文献   

19.
Ladybirds (Coleoptera: Coccinellidae) provide services that are critical to food production, and they fulfill an ecological role as a food source for predators. The richness, abundance, and distribution of ladybirds, however, are compromised by many anthropogenic threats. Meanwhile, a lack of knowledge of the conservation status of most species and the factors driving their population dynamics hinders the development and implementation of conservation strategies for ladybirds. We conducted a review of the literature on the ecology, diversity, and conservation of ladybirds to identify their key ecological threats. Ladybird populations are most affected by climate factors, landscape composition, and biological invasions. We suggest mitigating actions for ladybird conservation and recovery. Short-term actions include citizen science programs and education, protective measures for habitat recovery and threatened species, prevention of the introduction of non-native species, and the maintenance and restoration of natural areas and landscape heterogeneity. Mid-term actions involve the analysis of data from monitoring programs and insect collections to disentangle the effect of different threats to ladybird populations, understand habitat use by taxa on which there is limited knowledge, and quantify temporal trends of abundance, diversity, and biomass along a management-intensity gradient. Long-term actions include the development of a worldwide monitoring program based on standardized sampling to fill data gaps, increase explanatory power, streamline analyses, and facilitate global collaborations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号