共查询到20条相似文献,搜索用时 15 毫秒
1.
SAMUEL A. CUSHMAN KEVIN S. McKELVEY BARRY R. NOON KEVIN McGARIGAL 《Conservation biology》2010,24(3):830-840
Abstract: Indicator species concepts have a long history in conservation biology. Arguments in favor of these approaches generally stress expediency and assume efficacy. We tested the premise that the abundance patterns of one species can be used to infer those of other species. Our data consisted of 72,495 bird observations on 55 species across 1046 plots distributed across 30 sub basins. We analyzed abundance patterns at two spatial scales (plot and sub basin) and for empirical and a priori grouping. There were few significant indicator relationships at either scale or under either grouping rule, and those few we found did not explain a substantial portion of the abundance of other species. Coupled with the lack of proven efficacy for species surrogacy in the literature, our results indicate the utility of indicators and similar types of surrogate approaches must be demonstrated rather than assumed. 相似文献
2.
Ecological communities typically change along gradients of human impact, although it is difficult to estimate the footprint of impacts for diffuse threats such as pollution. We developed a joint model (i.e., one that includes multiple species and their interactions with each other and environmental covariates) of benthic habitats on lagoonal coral reefs and used it to infer change in benthic composition along a gradient of distance from logging operations. The model estimated both changes in abundances of benthic groups and their compositional turnover, a type of beta diversity. We used the model to predict the footprint of turbidity impacts from past and recent logging. Benthic communities far from logging were dominated by branching corals, whereas communities close to logging had higher cover of dead coral, massive corals, and soft sediment. Recent impacts were predicted to be small relative to the extensive impacts of past logging because recent logging has occurred far from lagoonal reefs. Our model can be used more generally to estimate the footprint of human impacts on ecosystems and evaluate the benefits of conservation actions for ecosystems. 相似文献
3.
HUILIANG LIU YE TAO DONG QIU DAOYUAN ZHANG YONGKUAN ZHANG 《Conservation biology》2013,27(5):1011-1019
Eremosparton songoricum (Fabaceae) is a rare, native, clonal small shrub of the deserts of central Asia. Although human activities have greatly fragmented the distribution of E. songoricum, it occurs in areas where artificial sand fixing (AS) has been implemented. We sought to explore whether AS promotes survival and growth of E. songoricum. In the Gurbantunggut Desert of northwestern China in June 2010, we established 10 plots in an area where sand fixing occurred (5–10 years previously) and 11 plots on original sand substrate on which some plants had settled without fixing sand. Sand fixing changed soil properties and biological characteristics in sand‐fixed plots. The soil surface where sand fixing occurred was covered by algal crusts and some lichen, but not bare sand (BS). Soil nutrients; water content of deep soil (30–150 cm); overall plant and herbaceous species richness, diversity, abundance, and cover; above‐ and belowground biomass; and cover, biomass, and height of E. songoricum in the sand‐fixed plots were significantly greater than in plots of BS. However, distribution of E. songoricum individuals in the 2 types of plots did not differ. Our results indicate AS may enhance survival of E. songoricum and increase the overall diversity and stability of the desert plant community. We suggest AS as a way to protect this rare desert plant in situ. Efectos de la Fijación Artificial de Arena sobre las Características de la Comunidad de un Arbusto Desértico Raro 相似文献
4.
Adina M. Merenlender Alycia W. Crall Sabrina Drill Michelle Prysby Heidi Ballard 《Conservation biology》2016,30(6):1255-1265
Amateur naturalists have played an important role in the study and conservation of nature since the 17th century. Today, naturalist groups make important contributions to bridge the gap between conservation science and practice around the world. We examined data from 2 regional naturalist programs to understand participant motivations, barriers, and perspectives as well as the actions they take to advance science, stewardship, and community engagement. These programs provide certification‐based natural history and conservation science training for adults that is followed by volunteer service in citizen science, education, and stewardship. Studies in California and Virginia include quantitative and qualitative evaluation data collected through pre‐ and postcourse surveys, interviews, and long‐term tracking of volunteer hours. Motivations of participants focused on learning about the local environment and plants and animals, connecting with nature, becoming certified, and spending time with people who have similar interests. Over half the participants surveyed were over 50 years old, two‐thirds were women, and a majority reported household incomes of over $50,000 (60% in California, 85% in Virginia), and <20% of those surveyed in both states described themselves as nonwhite. Thus, these programs need to improve participation by a wider spectrum of the public. We interviewed younger and underrepresented adults to examine barriers to participation in citizen science. The primary barrier was lack of time due to the need to work and focus on career advancement. Survey data revealed that participants’ ecological knowledge, scientific skills, and belief in their ability to address environmental issues increased after training. Documented conservation actions taken by the participants include invasive plant management, habitat restoration, and cleanups of natural areas and streams. Long‐term data from Virginia on volunteer hours dedicated to environmental citizen science show an increase from 14% in 2007 to 32% in 2014. In general, participants in the naturalist programs we examined increased their content knowledge about ecosystems, had greater confidence in conserving them, and continued to engage as citizen scientists after completing the program. 相似文献
5.
Abstract: Concerns about pollinator declines have grown in recent years, yet the ability to detect changes in abundance, taxonomic richness, and composition of pollinator communities is hampered severely by the lack of data over space and time. Citizen scientists may be able to extend the spatial and temporal extent of pollinator monitoring programs. We developed a citizen‐science monitoring protocol in which we trained 13 citizen scientists to observe and classify floral visitors at the resolution of orders or super families (e.g., bee, wasp, fly) and at finer resolution within bees (superfamily Apoidea) only. We evaluated the protocol by comparing data collected simultaneously at 17 sites by citizen scientists (observational data set) and by professionals (specimen‐based data set). The sites differed with respect to the presence and age of hedgerows planted to improve habitat quality for pollinators. We found significant, positive correlations among the two data sets for higher level taxonomic composition, honey bee (Apis mellifera) abundance, non‐Apis bee abundance, bee richness, and bee community similarity. Results for both data sets also showed similar trends (or lack thereof) in these metrics among sites differing in the presence and age of hedgerows. Nevertheless, citizen scientists did not observe approximately half of the bee groups collected by professional scientists at the same sites. Thus, the utility of citizen‐science observational data may be restricted to detection of community‐level changes in abundance, richness, or similarity over space and time, and citizen‐science observations may not reliably reflect the abundance or frequency of occurrence of specific pollinator species or groups. 相似文献
6.
Although Africa has many threatened species and biological hot spots, there are few citizen science schemes, particularly in rural communities, and there has been limited evaluation of existing programs. We engaged traditional Maasai warriors (pastoralist men aged 15 to 35) in community‐based conservation and demographic monitoring of a persecuted African lion (Panthera leo) population. Through direct engagement, we investigated whether a citizen science approach employing local warriors, who had no formal education, could produce reliable data on the demographics, predation, and movements of a species with which their communities have been in conflict for generations. Warriors were given benefits such as literacy training and skill enhancement and engaged in the monitoring of the lions. The trained warriors reported on lion sign across an area nearly 4000 km2. Scientists worked together with the warriors to verify their reports and gather observations on the lion population. Using the verified reports and collected observations, we examined our scientific knowledge relative to the lion population preceding and during the citizen science program. Our observations showed that data quality and quantity improved with the involvement and training of the participants. Furthermore, because they engaged in conservation and gained personal benefits, the participants came to appreciate a species that was traditionally their foe. We believe engaging other local communities in biodiversity conservation and monitoring may be an effective conservation approach in rural Africa. 相似文献
7.
JAMES E. BYERS IRIT ALTMAN ANDREW M. GROSSE TODD C. HUSPENI JOHN C. MAERZ 《Conservation biology》2011,25(1):85-93
Abstract: Digenean trematode parasites require multiple host species to complete their life cycles, and their abundance can often be strongly correlated with the abundance of their host species. Species richness and abundance of parasites in easily sampled host species may yield an accurate estimate of the species richness and abundance of other hosts in a parasite's life cycle that are difficult to survey directly. Accordingly, we investigated whether prevalence and mean abundance of trematodes could be used to estimate the abundance of one of their host species, diamondback terrapins (Malaclemys terrapin), which are difficult to sample and are designated as near threatened (by the International Union for Conservation of Nature [IUCN Red List]) along some U.S. coasts. As an adult the trematode Pleurogonius malaclemys is specific to terrapins. Its larval stages live first inside mud snails (Ilyanassa obsoleta) and are subsequently shed into the environment where they form external metacercarial cysts on hard surfaces such as snail opercula. The life cycle of P. malaclemys is completed when terrapins ingest these cysts. At 12 sites along the coast of Georgia (U.S.A.), we determined the prevalence of internal P. malaclemys larvae in mud snails (proportion of infected snails in a population) and the prevalence and mean abundance of external trematode cysts. We examined whether these data were correlated with terrapin abundance, which we estimated with mark‐recapture methods. The abundance of external cysts and salinity explained ≥59% of the variability in terrapin abundance. We suggest that dependent linkages between the life stages of multihost parasites make them reliable predictors of host species’ abundance, including hosts with abundances that are challenging to quantify directly. 相似文献
8.
Patrick J. Comer Robert L. Pressey Malcolm L. Hunter JR. Carrie A. Schloss Steven C. Buttrick Nicole E. Heller John M. Tirpak Daniel P. Faith Molly S. Cross Mark L. Shaffer 《Conservation biology》2015,29(3):692-701
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species‐centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others’ approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate. 相似文献
9.
Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land‐cover loss. We analyzed land‐cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth‐ through seventh‐order rivers and compared these estimates with current global figures. We used a species–area relation model (SAR) to predict short‐ and long‐term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species‐rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam‐related activities. A dam density of 0.3247/1000 km2 would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species‐rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. Efectos Potenciales del Desarrollo Hidroeléctrico Actual y Propuesto sobre la Diversidad Biológica Terrestre en el Himalaya Hindú 相似文献
10.
A. Abelson P.A. Nelson G.J. Edgar N. Shashar D.C. Reed J. Belmaker G. Krause M.W. Beck E. Brokovich R. France S.D. Gaines 《Conservation biology》2016,30(6):1182-1191
Marine protected areas (MPAs) are a commonly applied solution to coral reef degradation, yet coral reefs continue to decline worldwide. We argue that expanding the range of MPAs to include degraded reefs (DR‐MPA) could help reverse this trend. This approach requires new ecological criteria for MPA design, siting, and management. Rather than focusing solely on preserving healthy reefs, our approach focuses on the potential for biodiversity recovery and renewal of ecosystem services. The new criteria would help identify sites with the highest potential for recovery and the greatest resistance to future threats (e.g., increased temperature and acidification) and sites that contribute to MPA connectivity. The DR‐MPA approach is a compliment rather than a substitute for traditional MPA design approaches. We believe that the DR‐MPA approach can enhance the natural, or restoration‐assisted, recovery of DRs and their ecosystem services; increase total reef area available for protection; promote more resilient and better‐connected MPA networks; and improve conditions for human communities dependent on MPA ecosystem services. 相似文献
11.
Clare Aslan Nick Holmes Bernie Tershy Dena Spatz Donald A. Croll 《Conservation biology》2015,29(1):133-142
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas 相似文献
12.
Samuel Veloz Leonardo Salas Bob Altman John Alexander Dennis Jongsomjit Nathan Elliott Grant Ballard 《Conservation biology》2015,29(4):1217-1227
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts. 相似文献
13.
ELIZABETH A. HUNTER JAMES P. GIBBS LINDA J. CAYOT WASHINGTON TAPIA 《Conservation biology》2013,27(4):701-709
Loss of key plant–animal interactions (e.g., disturbance, seed dispersal, and herbivory) due to extinctions of large herbivores has diminished ecosystem functioning nearly worldwide. Mitigating for the ecological consequences of large herbivore losses through the use of ecological replacements to fill extinct species’ niches and thereby replicate missing ecological functions has been proposed. It is unknown how different morphologically and ecologically a replacement can be from the extinct species and still provide similar functions. We studied niche equivalency between 2 phenotypes of Galápagos giant tortoises (domed and saddlebacked) that were translocated to Pinta Island in the Galápagos Archipelago as ecological replacements for the extinct saddlebacked giant tortoise (Chelonoidis abingdonii). Thirty‐nine adult, nonreproductive tortoises were introduced to Pinta Island in May 2010, and we observed tortoise resource use in relation to phenotype during the first year following release. Domed tortoises settled in higher, moister elevations than saddlebacked tortoises, which favored lower elevation arid zones. The areas where the tortoises settled are consistent with the ecological conditions each phenotype occupies in its native range. Saddlebacked tortoises selected areas with high densities of the arboreal prickly pear cactus (Opuntia galapageia) and mostly foraged on the cactus, which likely relied on the extinct saddlebacked Pinta tortoise for seed dispersal. In contrast, domed tortoises did not select areas with cactus and therefore would not provide the same seed‐dispersal functions for the cactus as the introduced or the original, now extinct, saddlebacked tortoises. Interchangeability of extant megaherbivores as replacements for extinct forms therefore should be scrutinized given the lack of equivalency we observed in closely related forms of giant tortoises. Our results also demonstrate the value of trial introductions of sterilized individuals to test niche equivalency among candidate analog species. Equivalencia de Tortugas Gigantes de las Galápagos Utilizadas como Especie de Reemplazo Ecológico para Restaurar las Funciones de los Ecosistemas 相似文献
14.
CHOOI FEI NG MICHAEL A. MCCARTHY TARA G. MARTIN HUGH P. POSSINGHAM 《Conservation biology》2014,28(6):1617-1625
Time is of the essence in conservation biology. To secure the persistence of a species, we need to understand how to balance time spent among different management actions. A new and simple method to test the efficacy of a range of conservation actions is required. Thus, we devised a general theoretical framework to help determine whether to test a new action and when to cease a trial and revert to an existing action if the new action did not perform well. The framework involves constructing a general population model under the different management actions and specifying a management objective. By maximizing the management objective, we could generate an analytical solution that identifies the optimal timing of when to change management action. We applied the analytical solution to the case of the Christmas Island pipistrelle bat (Pipistrelle murrayi), a species for which captive breeding might have prevented its extinction. For this case, we used our model to determine whether to start a captive breeding program and when to stop a captive breeding program and revert to managing the species in the wild, given that the management goal is to maximize the chance of reaching a target wild population size. For the pipistrelle bat, captive breeding was to start immediately and it was desirable to place the species in captivity for the entire management period. The optimal time to revert to managing the species in the wild was driven by several key parameters, including the management goal, management time frame, and the growth rates of the population under different management actions. Knowing when to change management actions can help conservation managers’ act in a timely fashion to avoid species extinction. Determinar Cuándo Cambiar el Rumbo en las Acciones de Manejo 相似文献
15.
William R. L. Anderegg Leander D. L. Anderegg Clare Sherman Daniel S. Karp 《Conservation biology》2012,26(6):1082-1090
Forest die‐off around the world is expected to increase in coming decades as temperature increases due to climate change. Forest die‐off will likely affect understory plant communities, which have substantial influence on regional biological diversity, ecosystem function, and land–atmosphere interactions, but how die‐off alters these plant communities is largely unknown. We examined changes in understory plant communities following a widespread, drought‐induced die‐off of trembling aspen (Populus tremuloides) in the western United States. We assessed shrub and herbaceous cover and volume in quadrats in 55 plots located across a wide range of levels of aspen mortality. We measured species richness and composition of herbaceous plant communities by recording species presence and absence in 12 sets of paired (1 healthy, 1 dying) aspen plots. Although understory composition in healthy and dying stands was heterogeneous across the landscape, shrub abundance, cover, and volume were higher and abundance of herbaceous species, cover, and volume were lower in dying aspen stands. Shrub cover and volume increased from 2009 to 2011 in dying stands, which suggests that shrub growth and expansion is ongoing. Species richness of herbs declined by 23% in dying stands. Composition of herbs differed significantly between dying and healthy stands. Richness of non‐native species did not differ between stand types. The understory community in dying aspen stands was not similar to other shrub‐dominated plant communities in the region and may constitute a novel community. Our results suggest that changes in understory plant communities as forests die off could be a significant indirect effect of climate change on biological diversity and forest communities. Efectos de la Mortalidad Extensiva de Álamos Inducida por Sequía sobre Plantas del Sotobosque 相似文献
16.
Abstract: Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co‐occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community‐composition data. Composition‐based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment‐based models were built with soil chemistry, moisture content, above‐ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community‐composition data were the best predictors of both the site‐specific reproductive output of sown individuals and the site‐specific abundance of existing populations. Successful community‐based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community‐based modeling at scales relevant to conservation. 相似文献
17.
CHADWICK D. RITTENHOUSE ANNA M. PIDGEON THOMAS P. ALBRIGHT PATRICK D. CULBERT MURRAY K. CLAYTON CURTIS H. FLATHER JEFFREY G. MASEK VOLKER C. RADELOFF 《Conservation biology》2012,26(5):821-829
Abstract: Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land‐cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American Breeding Bird Survey data to examine land‐cover change and its associations with diversity of birds with principally terrestrial life cycles (landbirds) in the conterminous United States. We used mixed‐effects models and model selection to rank associations by ecoregion. Land cover in 3.22% of the area considered in our analyses changed from 1992 to 2001, and changes in species richness and abundance of birds were strongly associated with land‐cover changes. Changes in species richness and abundance were primarily associated with changes in nondominant types of land cover, yet in many ecoregions different types of land cover were associated with species richness than were associated with abundance. Conversion of natural land cover to anthropogenic land cover was more strongly associated with changes in bird species richness and abundance than persistence of natural land cover in nearly all ecoregions and different covariates were most strongly associated with species richness than with abundance in 11 of 17 ecoregions. Loss of grassland and shrubland affected bird species richness and abundance in forested ecoregions. Loss of wetland was associated with bird abundance in forested ecoregions. Our findings highlight the value of understanding changes in nondominant land cover types and their association with bird diversity in the United States. 相似文献
18.
Jeremy R. Brammer Nicolas D. Brunet A. Cole Burton Alain Cuerrier Finn Danielsen Kanwaljeet Dewan Thora Martina Herrmann Micha V. Jackson Rod Kennett Guillaume Larocque Monica Mulrennan Arun Kumar Pratihast Marie Saint‐Arnaud Colin Scott Murray M. Humphries 《Conservation biology》2016,30(6):1277-1287
Many argue that monitoring conducted exclusively by scientists is insufficient to address ongoing environmental challenges. One solution entails the use of mobile digital devices in participatory monitoring (PM) programs. But how digital data entry affects programs with varying levels of stakeholder participation, from nonscientists collecting field data to nonscientists administering every step of a monitoring program, remains unclear. We reviewed the successes, in terms of management interventions and sustainability, of 107 monitoring programs described in the literature (hereafter programs) and compared these with case studies from our PM experiences in Australia, Canada, Ethiopia, Ghana, Greenland, and Vietnam (hereafter cases). Our literature review showed that participatory programs were less likely to use digital devices, and 2 of our 3 more participatory cases were also slow to adopt digital data entry. Programs that were participatory and used digital devices were more likely to report management actions, which was consistent with cases in Ethiopia, Greenland, and Australia. Programs engaging volunteers were more frequently reported as ongoing, but those involving digital data entry were less often sustained when data collectors were volunteers. For the Vietnamese and Canadian cases, sustainability was undermined by a mismatch in stakeholder objectives. In the Ghanaian case, complex field protocols diminished monitoring sustainability. Innovative technologies attract interest, but the foundation of effective participatory adaptive monitoring depends more on collaboratively defined questions, objectives, conceptual models, and monitoring approaches. When this foundation is built through effective partnerships, digital data entry can enable the collection of more data of higher quality. Without this foundation, or when implemented ineffectively or unnecessarily, digital data entry can be an additional expense that distracts from core monitoring objectives and undermines project sustainability. The appropriate role of digital data entry in PM likely depends more on the context in which it is used and less on the technology itself. 相似文献
19.
Qiang Liu Jin Chen Richard T. Corlett XuLi Fan DongLI Yu HongPei Yang JiangYun Gao 《Conservation biology》2015,29(6):1563-1572
Xishuangbanna is on the northern margins of tropical Asia in southwestern China and has the largest area of tropical forest remaining in the country. It is in the Indo‐Burma hotspot and contains 16% of China's vascular flora in <0.2% of the country's total area (19,690 km2). Rapid expansion of monoculture crops in the last 20 years, particularly rubber, threatens this region's exceptional biodiversity. To understand the effects of land‐use change and collection on orchid species diversity and determine protection priorities, we conducted systematic field surveys, observed markets, interviewed orchid collectors, and then determined the conservation status of all orchids. We identified 426 orchid species in 115 genera in Xishuangbanna: 31% of all orchid species that occur in China. Species richness was highest at 1000–1200 m elevation. Three orchid species were assessed as possibly extinct in the wild, 15 as critically endangered, 82 as endangered, 124 as vulnerable, 186 as least concern, and 16 as data deficient. Declines over 20 years in harvested species suggested over‐collection was the major threat, and utility value (i.e., medicinal or ornamental value) was significantly related to endangerment. Expansion of rubber tree plantations was less of a threat to orchids than to other taxa because only 75 orchid species (17.6%) occurred below the 1000‐m‐elevation ceiling for rubber cultivation, and most of these (46) occurred in nature reserves. However, climate change is projected to lift this ceiling to around 1300 m by 2050, and the limited area at higher elevations reduces the potential for upslope range expansion. The Xishuangbanna Tropical Botanical Garden is committed to achieving zero plant extinctions in Xishuangbanna, and orchids are a high priority. Appropriate in and ex situ conservation strategies, including new protected areas and seed banking, have been developed for every threatened orchid species and are being implemented. 相似文献
20.
Abstract: Conserving rare species and protecting biodiversity and ecosystem functioning depends on sound information on the nature of rarity. Rarity is multidimensional and has a variety of definitions, which presents the need for a quantitative classification scheme with which to categorize species as rare or common. We constructed such a classification for North American freshwater fishes to better describe rarity in fishes and provide researchers and managers with a tool to streamline conservation efforts. We used data on range extents, habitat specificities, and local population sizes of North American freshwater fishes and a variety of quantitative methods and statistical decision criteria, including quantile regression and a cost‐function algorithm to determine thresholds for categorizing a species as rare or common. Species fell into eight groups that conform to an established framework for rarity. Fishes listed by the American Fisheries Society (AFS) as endangered, threatened, or vulnerable were most often rare because their local population sizes were low, ranges were small, and they had specific habitat needs, in that order, whereas unlisted species were most often considered common on the basis of these three factors. Species with large ranges generally had few specific habitat needs, whereas those with small ranges tended to have narrow habitat specificities. We identified 30 species not designated as imperiled by AFS that were rare along all dimensions of rarity and may warrant further study or protection, and we found three designated species that were common along all dimensions and may require a review of their imperilment status. Our approach could be applied to other taxa to aid conservation decisions and serve as a useful tool for future revisions of listings of fish species. 相似文献