首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
         下载免费PDF全文
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic‐based captive‐breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive‐breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray–Darling Basin in Australia. These two populations were rescued during Australia's recent decade‐long Millennium Drought, when their persistence became entirely dependent on captive‐breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity—despite skewed brooder contribution to offspring—was achieved through carefully managed genetic‐based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive‐bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic‐based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next‐generation sequencing technology.  相似文献   

2.
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns.  相似文献   

3.
Large‐scale infrastructure projects commonly have large effects on the environment. The planned construction of the Nicaragua Canal will irreversibly alter the aquatic environment of Nicaragua in many ways. Two distinct drainage basins (San Juan and Punta Gorda) will be connected and numerous ecosystems will be altered. Considering the project's far‐reaching environmental effects, too few studies on biodiversity have been performed to date. This limits provision of robust environmental impact assessments. We explored the geographic distribution of taxonomic and genetic diversity of freshwater fish species (Poecilia spp., Amatitlania siquia, Hypsophrys nematopus, Brycon guatemalensis, and Roeboides bouchellei) across the Nicaragua Canal zone. We collected population samples in affected areas (San Juan, Punta Gorda, and Escondido drainage basins), investigated species composition of 2 drainage basins and performed genetic analyses (genetic diversity, analysis of molecular variance) based on mitochondrial cytb. Freshwater fish faunas differed substantially between drainage basins (Jaccard similarity = 0.33). Most populations from distinct drainage basins were genetically differentiated. Removing the geographic barrier between these basins will promote biotic homogenization and the loss of unique genetic diversity. We found species in areas where they were not known to exist, including an undescribed, highly distinct clade of live bearing fish (Poecilia). Our results indicate that the Nicaragua Canal likely will have strong impacts on Nicaragua's freshwater biodiversity. However, knowledge about the extent of these impacts is lacking, which highlights the need for more thorough investigations before the environment is altered irreversibly.  相似文献   

4.
There is increasing recognition among conservation scientists that long‐term conservation outcomes could be improved through better integration of evolutionary theory into management practices. Despite concerns that the importance of key concepts emerging from evolutionary theory (i.e., evolutionary principles and processes) are not being recognized by managers, there has been little effort to determine the level of integration of evolutionary theory into conservation policy and practice. We assessed conservation policy at 3 scales (international, national, and provincial) on 3 continents to quantify the degree to which key evolutionary concepts, such as genetic diversity and gene flow, are being incorporated into conservation practice. We also evaluated the availability of clear guidance within the applied evolutionary biology literature as to how managers can change their management practices to achieve better conservation outcomes. Despite widespread recognition of the importance of maintaining genetic diversity, conservation policies provide little guidance about how this can be achieved in practice and other relevant evolutionary concepts, such as inbreeding depression, are mentioned rarely. In some cases the poor integration of evolutionary concepts into management reflects a lack of decision‐support tools in the literature. Where these tools are available, such as risk‐assessment frameworks, they are not being adopted by conservation policy makers, suggesting that the availability of a strong evidence base is not the only barrier to evolutionarily enlightened management. We believe there is a clear need for more engagement by evolutionary biologists with policy makers to develop practical guidelines that will help managers make changes to conservation practice. There is also an urgent need for more research to better understand the barriers to and opportunities for incorporating evolutionary theory into conservation practice.  相似文献   

5.
         下载免费PDF全文
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species‐centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others’ approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate.  相似文献   

6.
7.
Abstract: General consensus among scientists, commercial interests, and the public regarding the status of shark populations is leading to an increasing need for the scientific community to provide information to help guide effective management and conservation actions. Experience from other marine vertebrate taxa suggests that public, political, and media pressures will play an increasingly important part in setting research, management, and conservation priorities. We examined the potential implications of nonscientific influences on shark research. In particular, we considered whether lethal research sampling of sharks is justified. Although lethal sampling comes at a cost to a population, especially for threatened species, the conservation benefits from well‐designed studies provide essential data that cannot be collected currently in any other way. Methods that enable nonlethal collection of life‐history data on sharks are being developed (e.g., use of blood samples to detect maturity), but in the near future they will not provide widespread or significant benefits. Development of these techniques needs to continue, as does the way in which scientists coordinate their use of material collected during lethal sampling. For almost half of the known shark species there are insufficient data to determine their population status; thus, there is an ongoing need for further collection of scientific data to ensure all shark populations have a future. Shark populations will benefit most when decisions about the use of lethal sampling are made on the basis of scientific evidence that is free from individual, political, public, and media pressures.  相似文献   

8.
Reintroductions are increasingly used to reestablish species, but a paucity of long‐term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small‐population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos  相似文献   

9.
10.
Abstract: Debate on the values that underpin conservation science is rarely based on empirical analysis of the values conservation professionals actually hold. We used Q methodology to investigate the values held by international conservation professionals who attended the annual Student Conference in Conservation Science at the University of Cambridge (U.K.) in 2008 and 2009. The methodology offers a quantitative means of examining human subjectivity. It differs from standard opinion surveys in that individual respondents record the way they feel about statements relative to other statements, which forces them to focus their attention on the issues they believe are most important. The analysis extracts the diverse viewpoints of the respondents, and factor analysis is used to reduce the viewpoints to a smaller set of factors that reflect shared ways of thinking. The junior conservation professionals attending the conference did not share a unifying set of core values; rather, they held a complex series of ideas and a plurality of opinions about conservation and how it should be pursued. This diversity of values empirically challenges recent proposals for conservation professionals to unite behind a single philosophy. Attempts to forge an artificial consensus may be counterproductive to the overall goals conservation professionals are pursuing.  相似文献   

11.
         下载免费PDF全文
Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected‐area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus‐level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less‐than‐optimal phylogenetic diversity and prioritization of range‐restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. Maximizar la Riqueza Filogenética de los Bancos de Semillas  相似文献   

12.
Abstract: The search for generalities in ecology has often been thwarted by contingency and ecological complexity that limit the development of predictive rules. We present a set of concepts that we believe succinctly expresses some of the fundamental ideas in conservation biology. (1) Successful conservation management requires explicit goals and objectives. (2) The overall goal of biodiversity management will usually be to maintain or restore biodiversity, not to maximize species richness. (3) A holistic approach is needed to solve conservation problems. (4) Diverse approaches to management can provide diverse environmental conditions and mitigate risk. (5) Using nature's template is important for guiding conservation management, but it is not a panacea. (6) Focusing on causes not symptoms enhances efficacy and efficiency of conservation actions. (7) Every species and ecosystem is unique, to some degree. (8) Threshold responses are important but not ubiquitous. (9) Multiple stressors often exert critical effects on species and ecosystems. (10) Human values are variable and dynamic and significantly shape conservation efforts. We believe most conservation biologists will broadly agree these concepts are important. That said, an important part of the maturation of conservation biology as a discipline is constructive debate about additional or alternative concepts to those we have proposed here. Therefore, we have established a web‐based, online process for further discussion of the concepts outlined in this paper and developing additional ones.  相似文献   

13.
    
The taxonomic uniqueness of island populations is often uncertain which hinders effective prioritization for conservation. The Christmas Island shrew (Crocidura attenuata trichura) is the only member of the highly speciose eutherian family Soricidae recorded from Australia. It is currently classified as a subspecies of the Asian gray or long‐tailed shrew (C. attenuata), although it was originally described as a subspecies of the southeast Asian white‐toothed shrew (C. fuliginosa). The Christmas Island shrew is currently listed as endangered and has not been recorded in the wild since 1984–1985, when 2 specimens were collected after an 80‐year absence. We aimed to obtain DNA sequence data for cytochrome b (cytb) from Christmas Island shrew museum specimens to determine their taxonomic affinities and to confirm the identity of the 1980s specimens. The Cytb sequences from 5, 1898 specimens and a 1985 specimen were identical. In addition, the Christmas Island shrew cytb sequence was divergent at the species level from all available Crocidura cytb sequences. Rather than a population of a widespread species, current evidence suggests the Christmas Island shrew is a critically endangered endemic species, C. trichura, and a high priority for conservation. As the decisions typically required to save declining species can be delayed or deferred if the taxonomic status of the population in question is uncertain, it is hoped that the history of the Christmas Island shrew will encourage the clarification of taxonomy to be seen as an important first step in initiating informed and effective conservation action.  相似文献   

14.
It is well documented that hydropower plants can affect the dynamics of fish populations through landscape alterations and the creation of new barriers. Less emphasis has been placed on the examination of the genetic consequences for fish populations of the construction of dams. The relatively few studies that focus on genetics often do not consider colonization history and even fewer tend to use this information for conservation purposes. As a case study, we used a 3‐pronged approach to study the influence of historical processes, contemporary landscape features, and potential future anthropogenic changes in landscape on the genetic diversity of a fish metapopulation. Our goal was to identify the metapopulation's main attributes, detect priority areas for conservation, and assess the consequences of the construction of hydropower plants for the persistence of the metapopulation. We used microsatellite markers and coalescent approaches to examine historical colonization processes, traditional population genetics, and simulations of future populations under alternate scenarios of population size reduction and gene flow. Historical gene flow appeared to have declined relatively recently and contemporary populations appeared highly susceptible to changes in landscape. Gene flow is critical for population persistence. We found that hydropower plants could lead to a rapid reduction in number of alleles and to population extirpation 50–80 years after their construction. More generally, our 3‐pronged approach for the analyses of empirical genetic data can provide policy makers with information on the potential impacts of landscape changes and thus lead to more robust conservation efforts.  相似文献   

15.
Although remote sensing has been used for >40 years to learn about Earth, use of very high‐resolution satellite imagery (VHR) (<1‐m resolution) has become more widespread over the past decade for studying wildlife. As image resolution increases, there is a need to understand the capabilities and limitations of this exciting new path in wildlife research. We reviewed studies that used VHR to examine remote populations of wildlife. We then determined characteristics of the landscape and the life history of species that made the studies amenable to use of satellite imagery and developed a list of criteria necessary for appropriate use of VHR in wildlife research. From 14 representative articles, we determined 3 primary criteria that must be met for a system and species to be appropriately studied with VHR: open landscape, target organism's color contrasts with the landscape, and target organism is of detectable size. Habitat association, temporal exclusivity, coloniality, landscape differentiation, and ground truthing increase the utility of VHR for wildlife research. There is an immediate need for VHR imagery in conservation research, particularly in remote areas of developing countries, where research can be difficult. For wildlife researchers interested in but unfamiliar with remote sensing resources and tools, understanding capabilities and current limitations of VHR imagery is critical to its use as a conservation and wildlife research tool.  相似文献   

16.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

17.
Abstract: Funding for conservation is limited, and its investment for maximum conservation gain can likely be enhanced through the application of relevant science. Many donor institutions support and use science to pursue conservation goals, but their activities remain relatively unfamiliar to the conservation‐science community. We examined the priorities and practices of U.S.‐based private foundations that support biodiversity conservation. We surveyed 50 donor members of the Consultative Group on Biological Diversity (CGBD) to address three questions: (1) What support do CGBD members provide for conservation science? (2) How do CGBD members use conservation science in their grant making and strategic thinking? (3) How do CGBD members obtain information about conservation science? The 38 donor institutions that responded to the survey made $340 million in grants for conservation in 2005, including $62 million for conservation science. Individual foundations varied substantially in the proportion of conservation funds allocated to science. Foundations also varied in the ways and degree to which they used conservation science to guide their grant making. Respondents found it “somewhat difficult” to stay informed about conservation science relevant to their work, reporting that they accessed conservation science information mainly through their grantees. Many funders reported concerns about the strategic utility of funding conservation science to achieve conservation gains. To increase investment by private foundations in conservation science, funders, researchers, and conservation practitioners need to jointly identify when and how new scientific knowledge will lower barriers to conservation gains. We envision an evolving relationship between funders and conservation scientists that emphasizes primary research and synthesis motivated by (1) applicability, (2) human‐ecosystem interactions, (3) active engagement among scientists and decision makers, and (4) broader communication of relevant scientific information.  相似文献   

18.
The wolf (Canis lupus) is classified as endangered in Sweden by the Swedish Species Information Centre, which is the official authority for threat classification. The present population, which was founded in the early 1980s, descends from 5 individuals. It is isolated and highly inbred, and on average individuals are more related than siblings. Hunts have been used by Swedish authorities during 2010 and 2011 to reduce the population size to its upper tolerable level of 210 wolves. European Union (EU) biodiversity legislation requires all member states to promote a concept called “favourable conservation status” (FCS) for a series of species including the wolf. Swedish national policy stipulates maintenance of viable populations with sufficient levels of genetic variation of all naturally occurring species. Hunting to reduce wolf numbers in Sweden is currently not in line with national and EU policy agreements and will make genetically based FCS criteria less achievable for this species. We suggest that to reach FCS for the wolf in Sweden the following criteria need to be met: (1) a well‐connected, large, subdivided wolf population over Scandinavia, Finland, and the Russian Karelia‐Kola region should be reestablished, (2) genetically effective size (Ne) of this population is in the minimum range of Ne = 500–1000, (3) Sweden harbors a part of this total population that substantially contributes to the total Ne and that is large enough to not be classified as threatened genetically or according to IUCN criteria, and (4) average inbreeding levels in the Swedish population are <0.1. Efectos de la Cacería sobre el Estatus de Conservación Favorable de Lobos Suecos con Endogamia Alta  相似文献   

19.
Abstract: New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst‐case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single‐species assessment that is well‐integrated with a broader measurement of impacts on PD owing to climate change and other factors.  相似文献   

20.
Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号