首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   

2.
Conservation outcomes are uncertain. Agencies making decisions about what threat mitigation actions to take to save which species frequently face the dilemma of whether to invest in actions with high probability of success and guaranteed benefits or to choose projects with a greater risk of failure that might provide higher benefits if they succeed. The answer to this dilemma lies in the decision maker's aversion to risk—their unwillingness to accept uncertain outcomes. Little guidance exists on how risk preferences affect conservation investment priorities. Using a prioritization approach based on cost effectiveness, we compared 2 approaches: a conservative probability threshold approach that excludes investment in projects with a risk of management failure greater than a fixed level, and a variance‐discounting heuristic used in economics that explicitly accounts for risk tolerance and the probabilities of management success and failure. We applied both approaches to prioritizing projects for 700 of New Zealand's threatened species across 8303 management actions. Both decision makers’ risk tolerance and our choice of approach to dealing with risk preferences drove the prioritization solution (i.e., the species selected for management). Use of a probability threshold minimized uncertainty, but more expensive projects were selected than with variance discounting, which maximized expected benefits by selecting the management of species with higher extinction risk and higher conservation value. Explicitly incorporating risk preferences within the decision making process reduced the number of species expected to be safe from extinction because lower risk tolerance resulted in more species being excluded from management, but the approach allowed decision makers to choose a level of acceptable risk that fit with their ability to accommodate failure. We argue for transparency in risk tolerance and recommend that decision makers accept risk in an adaptive management framework to maximize benefits and avoid potential extinctions due to inefficient allocation of limited resources. El Efecto de la Aversión de Riesgo sobre la Priorización de Proyectos de Conservación  相似文献   

3.
Caught between ongoing habitat destruction and funding shortfalls, conservation organizations are using systematic planning approaches to identify places that offer the highest biodiversity return per dollar invested. However, available tools do not account for the landscape of funding for conservation or quantify the constraints this landscape imposes on conservation outcomes. Using state‐level data on philanthropic giving to and investments in land conservation by a large nonprofit organization, we applied linear regression to evaluate whether the spatial distribution of conservation philanthropy better explained expenditures on conservation than maps of biodiversity priorities, which were derived from a planning process internal to the organization and return on investment (ROI) analyses based on data on species richness, land costs, and existing protected areas. Philanthropic fund raising accounted for considerably more spatial variation in conservation spending (r2 = 0.64) than either of the 2 systematic conservation planning approaches (r2 = 0.08–0.21). We used results of one of the ROI analyses to evaluate whether increases in flexibility to reallocate funding across space provides conservation gains. Small but plausible “tax” increments of 1–10% on states redistributed to the optimal funding allocation from the ROI analysis could result in gains in endemic species protected of 8.5–80.2%. When such increases in spatial flexibility are not possible, conservation organizations should seek to cultivate increased support for conservation in priority locations. We used lagged correlations of giving to and spending by the organization to evaluate whether investments in habitat protection stimulate future giving to conservation. The most common outcome at the state level was that conservation spending quarters correlated significantly and positively with lagged fund raising quarters. In effect, periods of high fund raising for biodiversity followed (rather than preceded) periods of high expenditure on land conservation projects, identifying one mechanism conservation organizations could explore to seed greater activity in priority locations. Our results demonstrate how limitations on the ability of conservation organizations to reallocate their funding across space can impede organizational effectiveness and elucidate ways conservation planning tools could be more useful if they quantified and incorporated these constraints.  相似文献   

4.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   

5.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

6.
Incentivized debt conversion is a financing mechanism that can assist countries with a heavy debt burden to bolster their long-term domestic investment in nature conservation. The Nature Conservancy, an international conservation-based nongovernmental organization, is adapting debt conversions to support marine conservation efforts by small island developing states and coastal countries. Prioritizing debt conversion opportunities according to their potential return on investment can increase the impact and effectiveness of this finance mechanism. We developed guidance on how to do so with a decision-support approach that relies on a novel threat-based adaptation of cost-effectiveness analysis. We constructed scenarios by varying parameters of the approach, including enabling conditions, expected benefits, and threat classifications. Incorporating both abatable and unabatable threats affected priorities across planning scenarios. Similarly, differences in scenario construction resulted in unique solution sets for top priorities. We show how environmental organizations, private entities, and investment banks can adopt structured prioritization frameworks for making decisions about conservation finance investments, such as debt conversions. Our guidance can accommodate a suite of social, ecological, and economic considerations, making the approach broadly applicable to other conservation finance mechanisms or investment strategies that seek to establish a transparent process for return-on-investment decision-making.  相似文献   

7.
We investigated whether the impact of conservation science is greater for research conducted in countries with more pressing conservation problems. We quantified research impact for 231 countries based on 2 citation metrics (mean cites per paper and h index) and fitted models predicting research impact based on number of threatened bird and mammal species (as a measure of conservation importance of a country) and a range of demographic variables. Citation rates of conservation research increased as a country's conservation need increased and as human population, quality of governance, and wealth increased. Even after accounting for these factors, citation rates among regions and countries within regions varied significantly. The conservation research community needs to consider ways to begin addressing the entrenched disadvantages some countries have when it comes to initiating projects and producing high‐quality research.  相似文献   

8.
Conservation decisions increasingly involve multiple environmental and social objectives, which result in complex decision contexts with high potential for trade‐offs. Improving social equity is one such objective that is often considered an enabler of successful outcomes and a virtuous ideal in itself. Despite its idealized importance in conservation policy, social equity is often highly simplified or ill‐defined and is applied uncritically. What constitutes equitable outcomes and processes is highly normative and subject to ethical deliberation. Different ethical frameworks may lead to different conceptions of equity through alternative perspectives of what is good or right. This can lead to different and potentially conflicting equity objectives in practice. We promote a more transparent, nuanced, and pluralistic conceptualization of equity in conservation decision making that particularly recognizes where multidimensional equity objectives may conflict. To help identify and mitigate ethical conflicts and avoid cases of good intentions producing bad outcomes, we encourage a more analytical incorporation of equity into conservation decision making particularly during mechanistic integration of equity objectives. We recommend that in conservation planning motivations and objectives for equity be made explicit within the problem context, methods used to incorporate equity objectives be applied with respect to stated objectives, and, should objectives dictate, evaluation of equity outcomes and adaptation of strategies be employed during policy implementation.  相似文献   

9.
Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat‐specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.  相似文献   

10.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   

11.
There is increasing concern about the conservation status of sharks. However, the presence of numerous different (and potentially mutually exclusive) policies complicates management implementation and public understanding of the process. We distributed an online survey to members of the largest professional shark and ray research societies to assess member knowledge of and attitudes toward different conservation policies. Questions covered society member opinions on conservation and management policies, personal histories of involvement in advocacy and management, and perceptions of the approach of conservation nongovernmental organizations (NGOs) to shark conservation. One hundred and two surveys were completed (overall response rate 21%). Respondents considered themselves knowledgeable about and actively involved in conservation and management policy; a majority believed scientists have a responsibility to advocate for conservation (75%), and majorities have sent formal public comments to policymakers (54%) and included policy suggestions in their papers (53%). They believe sustainable shark fisheries are possible, are currently happening today (in a few places), and should be the goal instead of banning fisheries. Respondents were generally less supportive of newer limit‐based (i.e., policies that ban exploitation entirely without a species‐specific focus) conservation policy tools, such as shark sanctuaries and bans on the sale of shark fins, than of target‐based fisheries management tools (i.e., policies that allow for sustainable harvest of species whose populations can withstand it), such as fishing quotas. Respondents were generally supportive of environmental NGO efforts to conserve sharks but raised concerns about some NGOs that they perceived as using incorrect information and focusing on the wrong problems. Our results show there is an ongoing debate in shark conservation and management circles relative to environmental policy on target‐based natural resources management tools versus limit‐based conservation tools. They also suggest that closer communication between the scientific and environmental NGO communities may be needed to recognize and reconcile differing values and objectives between these groups.  相似文献   

12.
Conservation decision tools based on cost‐effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multiobjective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3‐day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost‐effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost‐effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.  相似文献   

13.
In systematic conservation planning, species distribution data for all sites in a planning area are used to prioritize each site in terms of the site's importance toward meeting the goal of species representation. But comprehensive species data are not available in most planning areas and would be expensive to acquire. As a shortcut, ecologists use surrogates, such as occurrences of birds or another well‐surveyed taxon, or land types defined from remotely sensed data, in the hope that sites that represent the surrogates also represent biodiversity. Unfortunately, surrogates have not performed reliably. We propose a new type of surrogate, predicted importance, that can be developed from species data for a q% subset of sites. With species data from this subset of sites, importance can be modeled as a function of abiotic variables available at no charge for all terrestrial areas on Earth. Predicted importance can then be used as a surrogate to prioritize all sites. We tested this surrogate with 8 sets of species data. For each data set, we used a q% subset of sites to model importance as a function of abiotic variables, used the resulting function to predict importance for all sites, and evaluated the number of species in the sites with highest predicted importance. Sites with the highest predicted importance represented species efficiently for all data sets when q = 25% and for 7 of 8 data sets when q = 20%. Predicted importance requires less survey effort than direct selection for species representation and meets representation goals well compared with other surrogates currently in use. This less expensive surrogate may be useful in those areas of the world that need it most, namely tropical regions with the highest biodiversity, greatest biodiversity loss, most severe lack of inventory data, and poorly developed protected area networks.  相似文献   

14.
The participation of private landowners in conservation is crucial to efficient biodiversity conservation. This is especially the case in settings where the share of private ownership is large and the economic costs associated with land acquisition are high. We used probit regression analysis and historical participation data to examine the likelihood of participation of Danish forest owners in a voluntary conservation program. We used the results to spatially predict the likelihood of participation of all forest owners in Denmark. We merged spatial data on the presence of forest, cadastral information on participation contracts, and individual‐level socioeconomic information about the forest owners and their households. We included predicted participation in a probability model for species survival. Uninformed and informed (included land owner characteristics) models were then incorporated into a spatial prioritization for conservation of unmanaged forests. The choice models are based on sociodemographic data on the entire population of Danish forest owners and historical data on their participation in conservation schemes. Inclusion in the model of information on private landowners’ willingness to supply land for conservation yielded at intermediate budget levels up to 30% more expected species coverage than the uninformed prioritization scheme. Our landowner‐choice model provides an example of moving toward more implementable conservation planning.  相似文献   

15.
Conserving biodiversity and combating ecological hazards require cost-effective allocation of limited resources among potential management projects. Project priorities, however, can change over time as underlying social-ecological systems progress, novel priorities emerge, and management capabilities evolve. Thus, reallocation of ongoing investments in response to shifting priorities could improve management outcomes and address urgent demands, especially when additional funding is not available immediately. Resource reallocation, however, could incur transaction costs, require additional monitoring and reassessment, and be constrained by ongoing project commitments. Such complexities may prevent managers from considering potentially beneficial reallocation strategies, reducing long-term effectiveness. We propose an iterative project prioritization approach, based on marginal return-on-investment estimation and portfolio optimization, that guides resource reallocation among ongoing and new projects. Using simulation experiments in 2 case studies, we explored how this approach can improve efficacy under varying reallocation constraints, frequencies, costs, and rates of project portfolio change. Periodic budget reallocation could enhance the management of stochastically emerging invasive weeds in Australia and thus reduce the overall risk by up to 50% compared with a static budget. Reallocation frequency and the rate of new weed incursion synergistically increased the conservation gains achieved by allowing unconstrained reallocation. Conversely, budget reallocation would not improve the International Union for Conservation of Nature conservation status of threatened Australian birds due to slow rates of transition among conservation states; extinction risk could increase if portfolio reassessment is costly. Although other project prioritization studies may recommend periodic reassessment and reallocation, our findings revealed conditions when reallocation is valuable and demonstrated a structured approach that can help conservation agencies schedule and implement iterative budget-allocation decisions cost-effectively.  相似文献   

16.
Systematic conservation planning optimizes trade‐offs between biodiversity conservation and human activities by accounting for socioeconomic costs while aiming to achieve prescribed conservation objectives. However, the most cost‐efficient conservation plan can be very dissimilar to any other plan achieving the set of conservation objectives. This is problematic under conditions of implementation uncertainty (e.g., if all or part of the plan becomes unattainable). We determined through simulations of parallel implementation of conservation plans and habitat loss the conditions under which optimal plans have limited chances of implementation and where implementation attempts would fail to meet objectives. We then devised a new, flexible method for identifying conservation priorities and scheduling conservation actions. This method entails generating a number of alternative plans, calculating the similarity in site composition among all plans, and selecting the plan with the highest density of neighboring plans in similarity space. We compared our method with the classic method that maximizes cost efficiency with synthetic and real data sets. When implementation was uncertain—a common reality—our method provided higher likelihood of achieving conservation targets. We found that χ, a measure of the shortfall in objectives achieved by a conservation plan if the plan could not be implemented entirely, was the main factor determining the relative performance of a flexibility enhanced approach to conservation prioritization. Our findings should help planning authorities prioritize conservation efforts in the face of uncertainty about future condition and availability of sites.  相似文献   

17.
One of the key determinants of success in biodiversity conservation is how well conservation planning decisions account for the social system in which actions are to be implemented. Understanding elements of how the social and ecological systems interact can help identify opportunities for implementation. Utilizing data from a large‐scale conservation initiative in southwestern of Australia, we explored how a social–ecological system framework can be applied to identify how social and ecological factors interact to influence the opportunities for conservation. Using data from semistructured interviews, an online survey, and publicly available data, we developed a conceptual model of the social–ecological system associated with the conservation of the Fitz‐Stirling region. We used this model to identify the relevant variables (remnants of vegetation, stakeholder presence, collaboration between stakeholders, and their scale of management) that affect the implementation of conservation actions in the region. We combined measures for these variables to ascertain how areas associated with different levels of ecological importance coincided with areas associated with different levels of stakeholder presence, stakeholder collaboration, and scales of management. We identified areas that could benefit from different implementation strategies, from those suitable for immediate conservation action to areas requiring implementation over the long term to increase on‐the‐ground capacity and identify mechanisms to incentivize implementation. The application of a social–ecological framework can help conservation planners and practitioners facilitate the integration of ecological and social data to inform the translation of priorities for action into implementation strategies that account for the complexities of conservation problems in a focused way.  相似文献   

18.
Scholars across all disciplines have long been interested in how knowledge moves within and beyond their community of peers. Rapid environmental changes and calls for sustainable management practices mean the best knowledge possible is needed to inform decisions, policies, and practices to protect biodiversity and sustainably manage vulnerable natural resources. Although the conservation literature on knowledge exchange (KE) and knowledge mobilization (KM) has grown in recent years, much of it is based on context‐specific case studies. This presents a challenge for learning cumulative lessons from KE and KM research and thus effectively using knowledge in conservation and natural resources management. Although continued research on the gap between knowledge and action is valuable, overarching conceptual frameworks are now needed to enable summaries and comparisons across diverse KE‐KM research. We propose a knowledge‐action framework that provides a conceptual roadmap for future research and practice in KE/KM with the aim of synthesizing lessons learned from contextual case studies and guiding the development and testing of hypotheses in this domain. Our knowledge‐action framework has 3 elements that occur at multiple levels and scales: knowledge production (e.g., academia and government), knowledge mediation (e.g., knowledge networks, actors, relational dimension, and contextual dimension), and knowledge‐based action (e.g., instrumental, symbolic, and conceptual). The framework integrates concepts from the sociology of science in particular, and serves as a guide to further comprehensive understanding of knowledge exchange and mobilization in conservation and sustainable natural resource management.  相似文献   

19.
Conservation efforts often focus on umbrella species whose distributions overlap with many other flora and fauna. However, because biodiversity is affected by different threats that are spatially variable, focusing only on the geographic range overlap of species may not be sufficient in allocating the necessary actions needed to efficiently abate threats. We developed a problem-based method for prioritizing conservation actions for umbrella species that maximizes the total number of flora and fauna benefiting from management while considering threats, actions, and costs. We tested our new method by assessing the performance of the Australian federal government's umbrella prioritization list, which identifies 73 umbrella species as priorities for conservation attention. Our results show that the federal government priority list benefits only 6% of all Australia's threatened terrestrial species. This could be increased to benefit nearly half (or 46%) of all threatened terrestrial species for the same budget of AU$550 million/year if more suitable umbrella species were chosen. This results in a 7-fold increase in management efficiency. We believe nations around the world can markedly improve the selection of prioritized umbrella species for conservation action with this transparent, quantitative, and objective prioritization approach.  相似文献   

20.
High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected‐area networks that accomplish targets efficiently. However, land‐use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost‐efficient conservation plans, we simulated a land‐acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land‐acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high‐priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land‐acquisition costs and land‐use intensity generally rose over time independent of inflation (24–78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73–13.9%, decreased the range of costs by 19–82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost‐effective, even with moderate levels of uncertainty in how to implement restoration goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号