首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The extinction of many species can only be inferred from the record of sightings of individuals. Solow et al. (2012, Uncertain sightings and the extinction of the Ivory‐billed Woodpecker. Conservation Biology 26: 180–184) describe a Bayesian approach to such inference and apply it to a sighting record of the Ivory‐billed Woodpecker (Campephilus principalis). A feature of this sighting record is that all uncertain sightings occurred after the most recent certain sighting. However, this appears to be an artifact. We extended this earlier work in 2 ways. First, we allowed for overlap in time between certain and uncertain sightings. Second, we considered 2 plausible statistical models of a sighting record. In one of these models, certain and uncertain sightings that are valid arise from the same process whereas in the other they arise from independent processes. We applied both models to the case of the Ivory‐billed Woodpecker. The result from the first model did not favor extinction, whereas the result for the second model did. This underscores the importance, in applying tests for extinction, of understanding what could be called the natural history of the sighting record. Sobre Avistamientos Inciertos e Inferencia de la Extinción  相似文献   

3.
Previous studies show that conservation actions have prevented extinctions, recovered populations, and reduced declining trends in global biodiversity. However, all studies to date have substantially underestimated the difference conservation action makes because they failed to account fully for what would have happened in the absence thereof. We undertook a scenario‐based thought experiment to better quantify the effect conservation actions have had on the extinction risk of the world's 235 recognized ungulate species. We did so by comparing species’ observed conservation status in 2008 with their estimated status under counterfactual scenarios in which conservation efforts ceased in 1996. We estimated that without conservation at least 148 species would have deteriorated by one International Union for Conservation of Nature (IUCN) Red List category, including 6 species that now would be listed as extinct or extinct in the wild. The overall decline in the conservation status of ungulates would have been nearly 8 times worse than observed. This trend would have been greater still if not for conservation on private lands. While some species have benefited from highly targeted interventions, such as reintroduction, most benefited collaterally from conservation such as habitat protection. We found that the difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated. Increased, and sustained, investment could help achieve further improvements.  相似文献   

4.
The extinction of a species can be inferred from a record of its sightings. Existing methods for doing so assume that all sightings in the record are valid. Often, however, there are sightings of uncertain validity. To date, uncertain sightings have been treated in an ad hoc way, either excluding them from the record or including them as if they were certain. We developed a Bayesian method that formally accounts for such uncertain sightings. The method assumes that valid and invalid sightings follow independent Poisson processes and use noninformative prior distributions for the rate of valid sightings and for a measure of the quality of uncertain sightings. We applied the method to a recently published record of sightings of the Ivory-billed Woodpecker (Campephilus principalis). This record covers the period 1897-2010 and contains 39 sightings classified as certain and 29 classified as uncertain. The Bayes factor in favor of extinction was 4.03, which constitutes substantial support for extinction. The posterior distribution of the time of extinction has 3 main modes in 1944, 1952, and 1988. The method can be applied to sighting records of other purportedly extinct species.  相似文献   

5.
The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4‐14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.  相似文献   

6.
Conservation actions, such as habitat protection, attempt to halt the loss of threatened species and help their populations recover. The efficiency and the effectiveness of actions have been examined individually. However, conservation actions generally occur simultaneously, so the full suite of implemented conservation actions should be assessed. We used the conservation actions underway for all threatened and near‐threatened birds of the world (International Union for Conservation of Nature Red List of Threatened Species) to assess which biological (related to taxonomy and ecology) and anthropogenic (related to geoeconomics) factors were associated with the implementation of different classes of conservation actions. We also assessed which conservation actions were associated with population increases in the species targeted. Extinction‐risk category was the strongest single predictor of the type of conservation actions implemented, followed by landmass type (continent, oceanic island, etc.) and generation length. Species targeted by invasive nonnative species control or eradication programs, ex situ conservation, international legislation, reintroduction, or education, and awareness‐raising activities were more likely to have increasing populations. These results illustrate the importance of developing a predictive science of conservation actions and the relative benefits of each class of implemented conservation action for threatened and near‐threatened birds worldwide.  相似文献   

7.
Habitat loss is the principal threat to species. How much habitat remains—and how quickly it is shrinking—are implicitly included in the way the International Union for Conservation of Nature determines a species’ risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area‐weighted self‐colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long‐term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category. Estimación del Riesgo de Extinción Mediante Modelos Metapoblacionales de Fragmentación a Gran Escala  相似文献   

8.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

9.
Abstract: We reviewed the evidence on the extent and efficacy of conservation of tropical forest biodiversity for each of the classes of conservation action defined by the new International Union for Conservation of Nature (IUCN) classification. Protected areas are the most tested conservation approach, and a number of studies show they are generally effective in slowing deforestation. There is some documentation of the extent of sustainable timber management in tropical forest, but little information on other landscape‐conservation tactics. The extent and effectiveness of ex situ species conservation is quite well known. Forty‐one tropical‐forest species now survive only in captivity. Other single‐species conservation actions are not as well documented. The potential of policy mechanisms, such as international conventions and provision of funds, to slow extinctions in tropical forests is considerable, but the effects of policy are difficult to measure. Finally, interventions to promote tropical conservation by supporting education and livelihoods, providing incentives, and furthering capacity building are all thought to be important, but their extent and effectiveness remain poorly known. For birds, the best studied taxon, the sum of such conservation actions has averted one‐fifth of the extinctions that would otherwise have occurred over the last century. Clearly, tropical forest conservation works, but more is needed, as is critical assessment of what works in what circumstances, if mass extinction is to be averted.  相似文献   

10.
Abstract: The lack of long‐term baseline data restricts the ability to measure changes in biological diversity directly and to determine its cause. This hampers conservation efforts and limits testing of basic tenets of ecology and conservation biology. We used a historical baseline survey to track shifts in the abundance and distribution of 296 native understory species across 82 sites over 55 years in the fragmented forests of southern Wisconsin. We resurveyed stands first surveyed in the early 1950s to evaluate the influence of patch size and surrounding land cover on shifts in native plant richness and heterogeneity and to evaluate changes in the relative importance of local site conditions versus the surrounding landscape context as drivers of community composition and structure. Larger forests and those with more surrounding forest cover lost fewer species, were more likely to recruit new species, and had lower rates of homogenization than smaller forests in more fragmented landscapes. Nearby urbanization further reduced both alpha and beta understory diversity. Similarly, understory composition depended strongly on local site conditions in the original survey but only weakly reflected the surrounding landscape composition. By 2005, however, the relative importance of these factors had reversed such that the surrounding landscape structure is now a much better predictor of understory composition than are local site conditions. Collectively, these results strongly support the idea that larger intact habitat patches and landscapes better sustain native species diversity and demonstrate that humans play an increasingly important role in driving patterns of native species diversity and community composition.  相似文献   

11.
Abstract: Understanding the ecological mechanisms that lead to extinction is a central goal of conservation. Can understanding ancient avian extinctions help to predict extinction risk in modern birds? I used classification trees trained on both paleoecological and historical data from islands across the Pacific to determine the ecological traits associated with extinction risk. Intrinsic traits, including endemism, large body size, and certain feeding guilds, were tightly linked with avian extinction over the past 3500 years. Species ecology and phylogeny were better predictors of extinction risk through time than extrinsic or abiotic factors. Although human impacts on birds and their habitats have changed over time, modern endangered birds share many of the same ecological characteristics as victims of previous extinction waves. My use of detailed predictions of extinction risk to identify species potentially in need of conservation attention demonstrates the utility of paleoecological knowledge for modern conservation biology.  相似文献   

12.
Abstract: Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host‐breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host‐breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host‐breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas.  相似文献   

13.
The taxonomic uniqueness of island populations is often uncertain which hinders effective prioritization for conservation. The Christmas Island shrew (Crocidura attenuata trichura) is the only member of the highly speciose eutherian family Soricidae recorded from Australia. It is currently classified as a subspecies of the Asian gray or long‐tailed shrew (C. attenuata), although it was originally described as a subspecies of the southeast Asian white‐toothed shrew (C. fuliginosa). The Christmas Island shrew is currently listed as endangered and has not been recorded in the wild since 1984–1985, when 2 specimens were collected after an 80‐year absence. We aimed to obtain DNA sequence data for cytochrome b (cytb) from Christmas Island shrew museum specimens to determine their taxonomic affinities and to confirm the identity of the 1980s specimens. The Cytb sequences from 5, 1898 specimens and a 1985 specimen were identical. In addition, the Christmas Island shrew cytb sequence was divergent at the species level from all available Crocidura cytb sequences. Rather than a population of a widespread species, current evidence suggests the Christmas Island shrew is a critically endangered endemic species, C. trichura, and a high priority for conservation. As the decisions typically required to save declining species can be delayed or deferred if the taxonomic status of the population in question is uncertain, it is hoped that the history of the Christmas Island shrew will encourage the clarification of taxonomy to be seen as an important first step in initiating informed and effective conservation action.  相似文献   

14.
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic‐based captive‐breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive‐breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray–Darling Basin in Australia. These two populations were rescued during Australia's recent decade‐long Millennium Drought, when their persistence became entirely dependent on captive‐breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity—despite skewed brooder contribution to offspring—was achieved through carefully managed genetic‐based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive‐bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic‐based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next‐generation sequencing technology.  相似文献   

15.
Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat‐risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis’ D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context.  相似文献   

16.
The Endangered Species Act (ESA) of the United States was enacted in 1973 to prevent the extinction of species. Recovery plans, required by 1988 amendments to the ESA, play an important role in organizing these efforts to protect and recover species. To improve the use of science in the recovery planning process, the Society for Conservation Biology (SCB) commissioned an independent review of endangered species recovery planning in 1999. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the U.S. Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. We sought to determine the extent to which results from the SCB study were incorporated into these new guidelines and whether the SCB recommendations regarding threats manifested in recovery plans written under the new guidelines. Recovery planning guidelines generally incorporated the SCB recommendations, including those for managing threats. However, although recent recovery plans have improved in their treatment of threats, many fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in improving ESA recovery planning.  相似文献   

17.
Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic‐alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic‐alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic‐alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic‐alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic‐alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry.  相似文献   

18.
Abstract: Coextinction is a poorly quantified phenomenon, but results of recent modeling suggest high losses to global biodiversity through the loss of dependent species when hosts go extinct. There are critical gaps in coextinction theory, and we outline these in a framework to direct future research toward more accurate estimates of coextinction rates. Specifically, the most critical priorities include acquisition of more accurate host data, including the threat status of host species; acquisition of data on the use of hosts by dependent species across a wide array of localities, habitats, and breadth of both hosts and dependents; development of models that incorporate correlates of nonrandom host and dependent extinctions, such as phylogeny and traits that increase extinction‐proneness; and determination of whether dependents are being lost before their hosts and adjusting models accordingly. Without synergistic development of better empirical data and more realistic models to estimate the number of cothreatened species and coextinction rates, the contribution of coextinction to global declines in biodiversity will remain unknown and unmanaged.  相似文献   

19.
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

20.
Habitat loss and fragmentation are causing widespread population declines, but identifying how and when to intervene remains challenging. Predicting where extirpations are likely to occur and implementing management actions before losses result may be more cost‐effective than trying to reestablish lost populations. Early indicators of pressure on populations could be used to make such predictions. Previous work conducted in 2009 and 2010 identified that the presence of Eastern Yellow Robins (Eopsaltria australis) in 42 sites in a fragmented region of eastern Australia was unrelated to woodland extent within 500 m of a site, but the robins’ heterophil:lymphocyte (H:L) ratios (an indicator of chronic stress) were elevated at sites with low levels of surrounding woodland. We resurveyed these 42 sites in 2013 and 2014 for robin presence to determine whether the H:L ratios obtained in 2009 and 2010 predicted the locations of extirpations and whether the previous pattern in H:L ratios was an early sign that woodland extent would become an important predictor of occupancy. We also surveyed for robins at 43 additional sites to determine whether current occupancy could be better predicted by landscape context at a larger scale, relevant to dispersal movements. At the original 42 sites, H:L ratios and extirpations were not related, although only 4 extirpations were observed. Woodland extent within 500 m had become a strong predictor of occupancy. Taken together, these results provide mixed evidence as to whether patterns of individual condition can reveal habitat relationships that become evident as local shifts in occupancy occur but that are not revealed by a single snapshot of species distribution. Across all 85 sites, woodland extent at scales relevant to dispersal (5 km) was not related to occurrence. We recommend that conservation actions focus on regenerating areas of habitat large enough to support robin territories rather than increasing connectivity within the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号