首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atlantic bluefin tuna (Thunnus thynnus) are highly migratory predators whose abundance, distribution, and somatic condition have changed over the past decades. Prey community composition and abundance have also varied in several foraging grounds. To better understand underlying food webs and regional energy sources, we performed stomach content and stable isotope analyses on mainly juvenile (60–150 cm curved fork length) bluefin tuna captured in foraging grounds in the western (Mid-Atlantic Bight) and eastern (Bay of Biscay) Atlantic Ocean. In the Mid-Atlantic Bight, bluefin tuna diet was mainly sand lance (Ammodytes spp., 29% prey weight), consistent with historic findings. In the Bay of Biscay, krill (Meganyctiphanes norvegica) and anchovy (Engraulis encrasicolus) made up 39% prey weight, with relative consumption of each reflecting annual changes in prey abundance. Consumption of anchovies apparently declined after the local collapse of this prey resource. In both regions, stable isotope analysis results showed that juvenile bluefin tuna fed at a lower trophic position than indicated by stomach content analysis. In the Mid-Atlantic Bight, stable isotope analyses suggested that >30% of the diet was prey from lower trophic levels that composed <10% of the prey weights based upon traditional stomach content analyses. Trophic position was similar to juvenile fish sampled in the NW Atlantic but lower than juveniles sampled in the Mediterranean Sea in previous studies. Our findings indicate that juvenile bluefin tuna targeted a relatively small range of prey species and regional foraging patterns remained consistent over time in the Mid-Atlantic Bight but changed in relation to local prey availability in the Bay of Biscay.  相似文献   

2.
The reproductive status and body condition of 195 (≥185 cm curved fork length, CFL; assigned age 7 and above) Atlantic bluefin tuna were assessed in the Gulf of Maine during the commercial fishing season of June–October, 2000–2002. Given the distance between known spawning and feeding grounds, the prevailing paradigm for Atlantic bluefin tuna (Thunnus thynnus thynnus, L.) suggests that the most likely histological state for females arriving in the Gulf of Maine after spawning would be a resting or quiescent state with little or no perigonadal fat. Alternatively, the presence of mature or mature-inactive histological states in some females supports a more varied or individualistic model for bluefin reproduction. No relationship was found between body condition and reproductive status. Males were found in all reproductive stages, but were more likely to be in spawning condition (stages 4 and 5) or a mature-inactive state (stage 6) in June and July. Female bluefin tuna were found in stage 1 (immature or non-spawning) and stage 6 (mature-inactive). Stage 6 females were only present in June and July and smaller females (<235 cm CFL) were more likely to be in stage 6 than large females (>235 cm CFL) sampled during those same months. The presence of smaller females in stage 6 arriving at the same time as larger females in stage 1 indicates that Western Atlantic bluefin tuna may have an asynchronous reproductive schedule and may mature at a smaller size than the currently accepted paradigm suggests.  相似文献   

3.
Population subdivision was examined in Atlantic bluefin tuna (Thunnus thynnus) through sequencing of the control region of the mitochondrial genome. A total of 178 samples from the spawning grounds in the Gulf of Mexico, Bahamas and Mediterranean Sea were analyzed. Among the samples from these locations were 36 electronically tagged bluefin tuna that were tagged in the North Atlantic and subsequently traveled to one of these known spawning grounds during the spawning season. Bluefin tuna populations from the Gulf of Mexico and the Mediterranean Sea were found to be genetically distinct based on Φst, and sequence nearest neighbor analyses, showing that these two major spawning areas support independent stocks. Sequence nearest neighbor analysis indicated significant population subdivision among the Gulf of Mexico, western Mediterranean and eastern Mediterranean Sea. However, it was not possible to find significant pairwise differences between any sampling areas when using all samples. If only samples that had a high likelihood of assignment to a specific spawning site were used (young of the year, spawning adults), the differentiation increased among all sampling areas and the Western Mediterranean Sea was distinct from the Eastern Mediterranean Sea and the Gulf of Mexico. It was not possible to distinguish samples from the Bahamas from those collected at any of the other sampling sites. These data support tagging results that suggested distinctness of the Gulf of Mexico, Eastern and Western Mediterranean Sea spawning areas. This level of stock differentiation is only possible if Atlantic bluefin tuna show strong natal homing to individual spawning grounds.  相似文献   

4.
Electronic tagging and remotely sensed oceanographic data were used to determine the oceanographic habitat use and preferences of Atlantic bluefin tuna (Thunnus thynnus L.) exhibiting behaviors associated with breeding in the Gulf of Mexico (GOM). Oceanographic habitats used by 28 Atlantic bluefin tuna exhibiting breeding behavior (259 days) were compared with available habitats in the GOM, using Monte Carlo tests and discrete choice models. Habitat utilization and preference patterns for ten environmental parameters were quantified: bathymetry, bathymetric gradient, SST, SST gradient, surface chlorophyll concentration, surface chlorophyll gradient, sea surface height anomaly, eddy kinetic energy, surface wind speed, and surface current speed. Atlantic bluefin tuna exhibited breeding behavior in the western GOM and the frontal zone of the Loop Current. Breeding areas used by the bluefin tuna were significantly associated with bathymetry, SST, eddy kinetic energy, surface chlorophyll concentration, and surface wind speed, with SST being the most important parameter. The bluefin tuna exhibited significant preference for areas with continental slope waters (2,800–3,400 m), moderate SSTs (24–25 and 26–27°C), moderate eddy kinetic energy (251–355 cm2 s−2), low surface chlorophyll concentrations (0.10–0.16 mg m−3), and moderate wind speeds (6–7 and 9–9.5 m s−1). A resource selection function of the bluefin tuna in the GOM was estimated using a discrete choice model and was found to be highly sensitive to SST. These habitat utilization and preference patterns exhibited by breeding bluefin tuna can be used to develop habitat models and estimate the probable breeding areas of bluefin tuna in a dynamic environment.  相似文献   

5.
Within the tropical and subtropical oceans, tuna forage opportunistically on a wide variety of prey. However, little is known about the trophic ecology of the smallest size classes which play an important role in stock assessments and fisheries management. The foraging behavior of yellowfin tuna, Thunnus albacares (23.5–154.0 cm FL), collected from nearshore Fish Aggregating Devices (FADs) around Oahu was studied using stable isotope and stomach contents analyses. Emphasis was placed on small juveniles. Yellowfin tuna changed their diets significantly between 45 and 50 cm forklength (ca. 1.5 kg). Smallest size classes fed on planktonic organisms inhabiting the shallow mixed layer, primarily larval stomatopod and decapod crustaceans, whereas larger tuna fed on teleosts and adult Oplophorus gracilirostris, a vertically migrating mesopelagic species of shrimp. When interpreting the variation in prey δ 15N values, we considered both their relative trophic position and δ 15N values of the nitrogen at the base of the food web. Based on the distinct diet shift of the yellowfin tuna, demonstrated by both isotope and stomach content analyses, we propose a critical mass threshold was reached at about 45 cm FL that enabled sufficient endothermic capability to allow tuna to access prey dwelling in deeper, colder water. These ontogenetic changes in foraging range and commensurate shift in diet of small tunas would affect their vulnerability to fishing pressure.  相似文献   

6.
Stable 13C and 15N isotope analyses of scale, bone, and muscle tissues were used to investigate diet and trophic position of North Atlantic bluefin tuna (Thunnus thynnus Linnaeus) during residency in the northwest Atlantic Ocean off the northeast coast of the United States. Adult bluefin tuna scales collected from fish between June and October 2001 were significantly enriched in 13C compared to both muscle and bone across all months, while muscle was significantly enriched in 15N compared to either bone or scale throughout the same period. In muscle tissue, there was evidence of a shift over the summer from prey with 13C values (–17 to –18) that were characteristic of silver hake (Merluccius bilinearis) to species with 13C values of –20 to –21 that were similar to Atlantic herring (Clupea harengus) and sandlance (Ammodytes americanus). Depletion of 15N values in adult scales and bone compared to muscle tissue may be explained by bone and scale samples representing juvenile or life-long feeding habits, isotopic routing, or isotopic differences in amino acid composition of the three tissue types. Adult bluefin tuna were estimated to be feeding at a trophic position similar to pelagic sharks in the northwest Atlantic Ocean, while the trophic positions of yellowfin tuna (Thunnus albacares), albacore tuna (Thunnus alalunga), and juvenile bluefin tuna were indicative of a diet of up to a full trophic position below adult bluefin tuna. The close relationship between the juvenile bluefin 15N values and those of suspension feeders suggests that nektonic crustaceans or zooplankton may contribute significantly to the diet of bluefin tuna, a food source previously overlooked for this species in the northwest Atlantic Ocean.Communicated by J.P. Grassle, New Brunswick  相似文献   

7.
Electronic tags were used to examine the biology of Atlantic bluefin tuna (Thunnus thynnus L.) on their breeding grounds in the Gulf of Mexico (GOM). The hypothesis that movement patterns, diving behavior, and thermal biology change during different stages of the breeding migration was tested. Mature Atlantic bluefin tuna tagged in the western Atlantic and the GOM, were on their breeding grounds from February to June for an average of 39 ± 11 days. The bluefin tuna experienced significantly warmer mean sea surface temperatures (SSTs) within the GOM (26.4 ± 1.6°C) than outside the GOM (20.2 ± 1.9°C). As the bluefin tuna entered and exited the GOM, the fish dove to daily maximum depths of 568 ± 50 and 580 ± 144 m, respectively, and exhibited directed movement paths to and from the localized breeding areas. During the putative breeding phase, the bluefin tuna had significantly shallower daily maximum depths (203 ± 76 m), and exhibited shallow oscillatory dives during the night. The movement paths of the bluefin tuna during the breeding phase were significantly more residential and sinuous. The heat transfer coefficients (K) were calculated for a bluefin tuna in the GOM using the recorded ambient and body temperatures. The K for this fish increased rapidly at the high ambient temperatures encountered in the GOM, and was significantly higher at night in the breeding phase when the fish was exhibiting shallow oscillatory dives. This suggests that the fish were behaviorally and physiologically thermoregulating in the Gulf of Mexico. This study demonstrates that the movement patterns, diving behavior, and thermal biology of Atlantic bluefin tuna change significantly at different stages of the breeding migration and can be used to define spawning location and timing. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
The Steller sea lion (SSL) population in Alaska was listed as threatened under the Endangered Species Act in 1990. At that time, several procedural restrictions were placed on the commercial fisheries of the region in an effort to reduce the potential for human-induced mortality on sea lions. Several years have elapsed since these restrictions were put into place, and questions about their efficacy remain. In an effort to determine whether or not fisheries management measures have helped the SSL population to recover, estimates of the fishing activity of the Bering Sea/Gulf of Alaska commercial fisheries in the vicinity of individual SSL rookeries and SSL population trends at those rookeries were made using data from the National Marine Fisheries Service (NMFS) Fisheries Observer Program and Steller Sea Lion Adult Count Database. Fisheries data from 1976-2000 were analyzed in relation to SSL population counts from 1956-2001 at 32 rookeries from the endangered western stock. Linear regression on the principal components of the fisheries data show that a positive correlation exists between several metrics of historical fishing activity and the SSL population decline. The relationship is less consistent after 1991, supporting a hypothesis that management measures around some of the rookeries have been effective in moderating the localized effects of fishing activity on SSL.  相似文献   

9.
Abstract: We tested the unsustainable fishing hypothesis that species in assemblages of fish differ in relative abundance as a function of their size, growth rates, vagility, trophic level, and diet by comparing species composition in historical bone middens, modern fisheries, and areas closed to fishing. Historical data came from one of the earliest and most enduring Swahili coastal settlements (approximately AD 750–1400). Modern data came from fisheries near the archeological site and intensively harvested fishing grounds in southern Kenya. The areas we sampled that were closed to fishing (closures) were small (<28 km2) and permanent. The midden data indicated changes in the fish assemblage that are consistent with a weak expansion of fishing intensity and the unsustainable fishing hypothesis. Fishes represented in the early midden assemblages from AD 750 to 950 had longer life spans, older age at maturity, and longer generation times than fish assemblages after AD 950, when the abundance of species with longer maximum body lengths increased. Changes in fish life histories during the historical period were, however, one‐third smaller than differences between the historical and modern assemblages. Fishes in the modern assemblage had smaller mean body sizes, higher growth and mortality rates, a higher proportion of microinvertivores, omnivores, and herbivores, and higher rates of food consumption, whereas the historical assemblage had a greater proportion of piscivores and macroinvertivores. Differences in fish life histories between modern closures and modern fishing grounds were also small, but the life histories of fishes in modern closures were more similar to those in the midden before AD 950 because they had longer life spans, older age at maturity, and a higher proportion of piscivores and macroinvertivores than the modern fisheries. Modern closures and historical fish assemblages were considerably different, although both contained species with longer life spans.  相似文献   

10.
The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small‐scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem‐based management approaches. However, ecosystem‐based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life‐history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade‐offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem‐based fisheries management targets that can be easily applied even where research capacity and information is limited. Of particular value, is our finding that current management tools may be used to reach key ecosystem‐based management targets, enabling ecosystem‐based management in many socioeconomic contexts.  相似文献   

11.
We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.  相似文献   

12.
Abstract: Freshwater biodiversity conservation is generally perceived to conflict with human use and extraction (e.g., fisheries). Overexploited fisheries upset the balance between local economic needs and endangered species’ conservation. We investigated resource competition between fisheries and Ganges river dolphins (Platanista gangetica gangetica) in a human‐dominated river system in India to assess the potential for their coexistence. We surveyed a 65‐km stretch of the lower Ganga River to assess habitat use by dolphins (encounter rates) and fishing activity (habitat preferences of fishers, intensity of net and boat use). Dolphin abundance in the main channel increased from 179 (SE 7) (mid dry season) to 270 (SE 8) (peak dry season), probably as a result of immigration from upstream tributaries. Dolphins preferred river channels with muddy, rocky substrates, and deep midchannel waters. These areas overlapped considerably with fishing areas. Sites with 2–6 boats/km (moderately fished) were more preferred by dolphins than sites with 8–55 boats/km (heavily fished). Estimated spatial (85%) and prey–resource overlap (75%) between fisheries and dolphins (chiefly predators of small fish) suggests a high level of competition between the two groups. A decrease in abundance of larger fish, indicated by the fact that small fish comprised 74% of the total caught, may have intensified the present competition. Dolphins seem resilient to changes in fish community structure and may persist in overfished rivers. Regulated fishing in dolphin hotspots and maintenance of adequate dry season flows can sustain dolphins in tributaries and reduce competition in the main river. Fish‐stock restoration and management, effective monitoring, curbing destructive fishing practices, secure tenure rights, and provision of alternative livelihoods for fishers may help reconcile conservation and local needs in overexploited river systems.  相似文献   

13.
The sustained decline in marine fisheries worldwide underscores the need to understand and monitor fisheries trends and fisher behavior. Recreational fisheries are unique in that they are not subject to the typical drivers that influence commercial and artisanal fisheries (e.g., markets or food security). Nevertheless, although exposed to a different set of drivers (i.e., interest or relaxation), recreational fisheries can contribute to fishery declines. Recreational fisheries are also difficult to assess due to an absence of past monitoring and traditional fisheries data. Therefore, we utilized a nontraditional data source (a chronology of spearfishing publications) to document historical trends in recreational spearfishing in Australia between 1952 and 2009. We extracted data on reported fish captures, advertising, and spearfisher commentary and used regression models and ordination analyses to assess historical change. The proportion of coastal fish captures reported declined approximately 80%, whereas the proportion of coral reef and pelagic fish reports increased 1750% and 560%, respectively. Catch composition shifted markedly from coastal temperate or subtropical fishes during the 1950s to 1970s to coral reef and pelagic species in the 1990s to 2000s. Advertising data and commentary by spearfishers indicated that pelagic fish species became desired targets. The mean weight of trophy coral reef fishes also declined significantly over the study period (from approximately 30–8 kg). Recreational fishing presents a highly dynamic social–ecological interface and a challenge for management. Our results emphasize the need for regulatory agencies to work closely with recreational fishing bodies to observe fisher behavior, detect shifts in target species or fishing intensity, and adapt regulatory measures. Tendencias Dinámicas de Captura en la Historia de la Pesca Recreativa con Arpón en Australia  相似文献   

14.
Atlantic bluefin tuna (BFT; Thunnus thynnus) is a migrating species straddling the North Atlantic Ocean and Mediterranean Sea. It is assumed that this species is divided into a western and an eastern stock, which spawn in the Gulf of Mexico and the Mediterranean Sea, respectively. To learn more about the reproductive behavior of the eastern BFT stock, we tracked gonadal development in adult fish that were sampled between April and July during three consecutive years (2003–2005). Sampling campaigns were carried out using common fishing methods at selected locations within the Mediterranean Sea, namely Levantine Sea, Malta, and Balearic Islands. An additional sampling point, Barbate, was situated northwest of the Straits of Gibraltar along the Atlantic coast. Morphometric parameters such as the total body mass (M B) and the weights of the gonads (M G) were recorded, and the respective gonadosomatic index (GSI) values were calculated. The data collected revealed two important trends: (1) GSI values are higher in fish caught in the eastern rather than the western locations across the Mediterranean Sea, and (2) the GSI reaches maximum values between late May and early June in Levantine Sea (eastern Mediterranean Sea), and only 2 and 4 weeks later in the central (Malta) and western (Balearic Islands) locations, respectively. The advanced gonadal development in BFT correlates well with higher sea surface temperatures. Our findings also distinguish the northern Levantine Sea BFT population (mean M B 78.41 ± 4.13 kg), and the Barbate BFT population with the greatest M B (all fish sampled > 100 kg). These data reflect a situation in which the eastern Mediterranean basin may function as a habitat for young BFT, until they gain a larger M B and are able to move to the Atlantic Ocean. However, the existence of genetically discrete BFT populations in the Mediterranean Sea cannot be ruled out.  相似文献   

15.
The genetic population structures of Atlantic northern bluefin tuna ( Thunnus thynnus thynnus) and albacore ( T. alalunga) were examined using allozyme analysis. A total of 822 Atlantic northern bluefin tuna from 18 different samples (16 Mediterranean, 1 East Atlantic, 1 West Atlantic) and 188 albacore from 5 samples (4 Mediterranean, 1 East Atlantic) were surveyed for genetic variation in 37 loci. Polymorphism and heterozygosity reveal a moderate level of genetic variability, with only two highly polymorphic loci in both Atlantic northern bluefin tuna ( FH* and SOD- 1*) and albacore ( GPI- 3* and XDH*). The level of population differentiation found for Atlantic northern bluefin tuna and albacore fits the pattern that has generally been observed in tunas, with genetic differences on a broad rather than a more local scale. For Atlantic northern bluefin tuna, no spatial or temporal genetic heterogeneity was observed within the Mediterranean Sea or between the East Atlantic and Mediterranean, indicating the existence of a single genetic grouping on the eastern side of the Atlantic Ocean. Very limited genetic differentiation was found between West Atlantic and East Atlantic/Mediterranean northern bluefin tuna, mainly due to an inversion of SOD- 1* allele frequencies. Regarding albacore, no genetic heterogeneity was observed within the Mediterranean Sea or between Mediterranean and Azores samples, suggesting the existence of a single gene pool in this area.  相似文献   

16.
Six Pacific bluefin tuna were tracked with ultrasonic telemetry and two with pop-up satellite archival tags (PSATs) in the eastern Pacific Ocean in 1997, 1998, and 1999. Both pressure and temperature ultrasonic transmitters were used to examine the behavior of the 2- to 4-year-old bluefin tuna. The bluefin spent over 80% of their time in the top 40 m of the water column and made occasional dives into deeper, cooler water. The mean slow-oxidative muscle temperatures of three fish instrumented with pressure and temperature transmitters were 22.0–26.1 °C in water temperatures that averaged 15.7–17.5 °C. The thermal excesses in slow-oxidative muscle averaged 6.2–8.6 °C. Variation in the temperature of the slow-oxidative muscle in the bluefin was not correlated with water temperature or swimming speeds. For comparison with the acoustic tracking data we examined the depth and ambient temperature of two Pacific bluefin tagged with pop-up satellite archival tags for 24 and 52 days. The PSAT data sets show depth and temperature distributions of the bluefin tuna similar to the acoustic data set. Swimming speeds calculated from horizontal distances with the acoustic data indicate the fish mean speeds were 1.1–1.4 fork lengths/s (FL s−1). These Pacific bluefin spent the majority of their time in the top parts of the water column in the eastern Pacific Ocean in a pattern similar to that observed for yellowfin tuna. Received: 4 April 2000 / Accepted: 25 October 2000  相似文献   

17.
Entanglement in fixed fishing gear affects whales worldwide. In the United States, deaths of North Atlantic right (Eubalaena glacialis) and humpback whales (Megaptera novaeangliae) have exceeded management limits for decades. We examined live and dead whales entangled in fishing gear along the U.S. East Coast and the Canadian Maritimes from 1994 to 2010. We recorded whale species, age, and injury severity and determined rope polymer type, breaking strength, and diameter of the fishing gear. For the 132 retrieved ropes from 70 cases, tested breaking strength range was 0.80–39.63 kN (kiloNewtons) and the mean was 11.64 kN (SD 8.29), which is 26% lower than strength at manufacture (range 2.89–53.38 kN, mean = 15.70 kN [9.89]). Median rope diameter was 9.5 mm. Right and humpback whales were found in ropes with significantly stronger breaking strengths at time of manufacture than minke whales (Balaenoptera acuturostrata) (19.30, 17.13, and 10.47 mean kN, respectively). Adult right whales were found in stronger ropes (mean 34.09 kN) than juvenile right whales (mean 15.33 kN) and than all humpback whale age classes (mean 17.37 kN). For right whales, severity of injuries increased since the mid 1980s, possibly due to changes in rope manufacturing in the mid 1990s that resulted in production of stronger ropes at the same diameter. Our results suggest that broad adoption of ropes with breaking strengths of ≤7.56 kN (≤1700 lbsf) could reduce the number of life‐threatening entanglements for large whales by at least 72%, and yet could provide sufficient strength to withstand the routine forces involved in many fishing operations. A reduction of this magnitude would achieve nearly all the mitigation legally required for U.S. stocks of North Atlantic right and humpback whales. Ropes with reduced breaking strength should be developed and tested to determine the feasibility of their use in a variety of fisheries.  相似文献   

18.
Short-lived, fast-growing species that contribute greatly to global capture fisheries are sensitive to fluctuations in the environment. Uncertainties in exact stock–environment relationships have meant that environmental variability and extremes have been difficult to integrate directly into fisheries management. We applied a management strategy evaluation approach for one of Australia's large prawn stocks to test the robustness of harvest control rules to environmental variability. The model ensemble included coupled environmental-population models and an alternative catchability scenario fitted to historical catch per unit effort data. We compared the efficacy of alternative management actions to conserve marine resources under a variable environment while accounting for fisher livelihoods. Model fits to catch per unit effort were reasonably good and similar across operating models (OMs). For models that were coupled to the environment, environmental parameters for El Niño years were estimated with good associated precision, and OM3 had a lower AIC score (77.61)  than the base model (OM1, 80.39), whereas OM2 (AIC 82.41) had a similar AIC score, suggesting the OMs were all plausible model alternatives. Our model testing resulted in a plausible subset of management options, and stakeholders selected a permanent closure of the first fishing season based on overall performance of this option; ability to reduce the risk of fishery closure and stock collapse; robustness to uncertainties; and ease of implementation. Our simulation approach enabled the selection of an optimal yet pragmatic solution for addressing economic and conservation objectives under a variable environment with extreme events.  相似文献   

19.
Ultrasonic, depth-sensitive transmitters were used to track the horizontal and vertical movements, for up to 48 h, of 11 adult (136 to 340 kg estimated body mass) North Atlantic bluefin tuna (Thunnus thynnus Linnaeus). Fish were tracked in October 1995, September and October 1996, and August and September 1997 in the Gulf of Maine, northwestern Atlantic. The objective was to document the behavior of these fish and their schools in order to provide the spatial, temporal, and environmental information required for direct (i.e. fishery-independent) assessment of adult bluefin tuna abundance using aerial surveys. Transmitters were attached to free-swimming fish using a harpoon attachment technique, and all fish remained within the Gulf of Maine while being followed. Most of the bluefin tuna tagged on Stellwagen Bank or in Cape Cod Bay (and followed for at least 30 h) held a predominately easterly course with net horizontal displacements of up to 76 km d−1. Mean (±SD) swimming depth for all fish was 14 ± 4.7 m and maximum depth for individuals ranged from 22 to 215 m. All but one fish made their deepest excursions, often single descents, at dawn and dusk. In general, adult bluefin tuna spent <8% of their time at the surface (0 to 1 m), <19% in the top 4 m, but >90% in the uppermost 30 m. Mean (±SD) speed over ground was 5.9 km h−1, but for brief periods surpassed 20 to 31 km h−1. Sea surface temperatures during tracking were 11.5 to 22.0 °C, and minimum temperatures encountered by the fish ranged from 6.0 to 9.0 °C. Tagged bluefin tuna and their schools frequented ocean fronts marked by mixed vertebrate feeding assemblages, which included sea birds, baleen whales, basking sharks, and other bluefin schools. Received: 19 July 1999 / Accepted: 25 March 2000  相似文献   

20.
In modern aquaculture, animal-production technology is used to increase aquatic food sources. Such controlled rearing of seafood can, in principle, shift the pressure off wild stocks and aquatic ecosystems by reducing fishing activities, which may advance marine conservation goals. We examined resource displacement—the reduced consumption of a resource due to its replacement with a more environmentally benign substitute—in fisheries. We employed panel regression techniques in an analysis of time-series data from 1970 through 2014 to assess the extent to which aquaculture production displaced fisheries captures for all nations for which data were available. We estimated 9 models to assess whether aquaculture production suppresses captures once other factors related to demand have been controlled for. Only 1 model predicted significant suppression of fisheries captures associated with aquaculture systems within nations over time. These results suggest that global aquaculture production does not substantially displace fisheries capture; instead, aquaculture production largely supplements fisheries capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号