首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urban growth is a major threat to biodiversity conservation at the global scale. Its impacts are expected to be especially detrimental when it sprawls into the landscape and reaches sites of high conservation value due to the species and ecosystems they host, such as protected areas. I analyzed the degree of urbanization (i.e., urban cover and growth rate) from 2006 to 2015 in protected sites in the Natura 2000 network, which, according to the Habitats and Birds Directives, harbor species and habitats of high conservation concern in Europe. I used data on the degree of land imperviousness from COPERNICUS to calculate and compare urban covers and growth rates inside and outside Natura 2000. I also analyzed the relationships of urban cover and growth rates with a set of characteristics of Natura sites. Urban cover inside Natura 2000 was 10 times lower than outside (0.4% vs. 4%) throughout the European Union. However, the rates of urban growth were slightly higher inside than outside Natura 2000 (4.8% vs. 3.9%), which indicates an incipient urban sprawl inside the network. In general, Natura sites affected most by urbanization were those surrounded by densely populated areas (i.e., urban clusters) that had a low number of species or habitats of conservation concern, albeit some member states had high urban cover or growth rate or both in protected sites with a large number of species or habitats of high conservation value. Small Natura sites had more urban cover than large sites, but urban growth rates were highest in large Natura sites. Natura 2000 is protected against urbanization to some extent, but there is room for improvement. Member states must enact stricter legal protection and control law enforcement to halt urban sprawl into protected areas under the greatest pressure from urban sprawl (i.e., close to urban clusters). Such actions are particularly needed in Natura sites with high urban cover and growth rates and areas where urbanization is affecting small Natura sites of high conservation value, which are especially vulnerable and concentrated in the Mediterranean region.  相似文献   

2.
Established under the European Union (EU) Birds and Habitats Directives, Natura 2000 is one of the largest international networks of protected areas. With the spatial designation of sites by the EU member states almost finalized, the biggest challenge still lying ahead is the appropriate management of the sites. To evaluate the cross‐scale functioning of Natura 2000 implementation, we analyzed 242 questionnaires completed by conservation scientists involved in the implementation of Natura 2000 in 24 EU member states. Respondents identified 7 key drivers of the quality of Natura 2000 implementation. Ordered in decreasing evaluation score, these drivers included: network design, use of external resources, legal frame, scientific input, procedural frame, social input, and national or local policy. Overall, conservation scientists were moderately satisfied with the implementation of Natura 2000. Tree modeling revealed that poor application of results of environmental impact assessments (EIA) was considered a major constraint. The main strengths of the network included the substantial increase of scientific knowledge of the sites, the contribution of nongovernmental organizations, the adequate network design in terms of area and representativeness, and the adequacy of the EU legal frame. The main weaknesses of Natura 2000 were the lack of political will from local and national governments toward effective implementation; the negative attitude of local stakeholders; the lack of background knowledge of local stakeholders, which prevented well‐informed policy decisions; and the understaffing of Natura 2000 management authorities. Top suggestions to improve Natura 2000 implementation were increase public awareness, provide environmental education to local communities, involve high‐quality conservation experts, strengthen quality control of EIA studies, and establish a specific Natura 2000 fund. El Reto de Implementar la Red Europea de Áreas Protegidas Natura 2000  相似文献   

3.
Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species‐equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009–2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected‐site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty‐six percent of species of least concern were offset species. Thirty‐five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5–10 times lower. The species‐equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle through offsets is highly important for the long‐term conservation of biodiversity in Europe. Compensaciones y Conservación de las Especies de las Directivas de Hábitats y Aves de la UE  相似文献   

4.
Abstract:  The Natura 2000 network is the most important conservation effort being implemented in Europe. Nevertheless, no comprehensive and systematic region—or nationwide evaluation of the effectiveness of the network has been conducted. We used habitat suitability models and extent of occurrence of 468 species of vertebrates to evaluate the contribution of the Natura 2000 network to biodiversity conservation in Italy. We also estimated the population size of 101 species inside the Natura 2000 network to assess its capacity to maintain or improve the population status of listed species. In general the Italian Natura 2000 did not seem to integrate existing protected areas well. The Natura 2000 network increased from 11% to 20% the area devoted to conservation in Italy and the coverage provided to areas with high biodiversity. Nevertheless, some areas with high numbers of species were devoid of conservation areas, and more than 50% of the highly irreplaceable areas were not considered in the system. Moreover, the Natura 2000 network cannot maintain 44–80% (depending on the taxa considered) of the species in a "favorable conservation status" under World Conservation Union Red List criteria. The Natura 2000 network is probably stronger than the results of our analyses suggest. The system is based on a site-specific expert-based strategy and is driven by direct and detailed knowledge of local diversity. Nevertheless, if Natura 2000 is taken to represent the final point of all the EU conservation policies, it will inevitably fail. Its role in conservation could be enhanced by integrating the Natura 2000 system into a more general strategy that considers natural processes and the ecological and evolutionary mechanisms underlying these processes.  相似文献   

5.
Abstract:  The Global Strategy of Plant Conservation states that at least 60% of threatened plant species should be within protected areas. This goal has been met in some regions with long traditions of plant protection. We used gap analysis to explore how particular groups of species of conservation interest, representing different types of natural or anthropogenic rarity, have been covered by protected areas on a national scale in Estonia during the last 100 years. Species-accumulation curves indicated that plant species that are naturally rare (restricted global or local distribution, always small populations, or very rare habitat requirements) needed almost twice as many protected areas to reach the 60% target as plant species that are rare owing to lack of suitable management (species depending on grassland management, moderate forest disturbances, extensive traditional agriculture, or species potentially threatened by collecting). Temporal analysis of the establishment of protected areas suggested that grouping plant species according to the predominant cause of rarity accurately reflected the history of conservation decision making. Species found in very rare habitats have previously received special conservation attention; species dependent on traditional extensive agriculture have been largely ignored until recently. Legislative initiative and new nature-protection schemes (e.g., Natura 2000, network of protected areas in the European Union) have had a positive influence on all species groups. Consequently, the species groups needing similar action for their conservation are sensitive indicators of the effectiveness of protected-area networks. Different species groups, however, may not be uniformly conserved within protected areas, and all species groups should fulfill the target of 60% coverage within protected areas.  相似文献   

6.
Migratory waterfowl depend on habitat networks at local, national and international scales for their survival. Coastal habitats are key areas for many waterfowl. Different species use different biotopes and in different places, so overall many parts of the coastal resource are important. As well as national conservation efforts, waterfowl conservation is increasingly focussed worldwide on collaborative international conservation, catalysed by several measures e.g. the Ramsar Convention, the EC Conservation of Wild Birds Directive, and the Bonn Convention Agreement on the Conservation of African/Eurasian Migratory Waterbirds. Several international conservation plans are under development for single species, but a more effective approach may be to develop plans, for assemblages of migratory birds with similar habitat requirements. All such plans must incorporate future sustainable use of the habitats on which the birds depend. Yet migratory bird and coastal habitat conservation is still often approached separately, despite the two being now closely linked to the development of the Natura 2000 site network in the European Community. Implementing the 1992 EC Habitats Directive requires the selection of coastal habitat sites for designation, set in national and international contexts of resource distribution. International coastal habitat inventories are needed to underpin this process. Combining such inventories with assessment of the flyway habitat requirements of waterfowl species and assemblages offers great potential for identifying international coastal habitat networks that meet the objectives of both habitat and migratory waterfowl conservation.  相似文献   

7.
Abstract: Protected areas are a cornerstone of conservation and have been designed largely around terrestrial features. Freshwater species and ecosystems are highly imperiled, but the effectiveness of existing protected areas in representing freshwater features is poorly known. Using the inland waters of Michigan as a test case, we quantified the coverage of four key freshwater features (wetlands, riparian zones, groundwater recharge, rare species) within conservation lands and compared these with representation of terrestrial features. Wetlands were included within protected areas more often than expected by chance, but riparian zones were underrepresented across all (GAP 1–3) protected lands, particularly for headwater streams and large rivers. Nevertheless, within strictly protected lands (GAP 1–2), riparian zones were highly represented because of the contribution of the national Wild and Scenic Rivers Program. Representation of areas of groundwater recharge was generally proportional to area of the reserve network within watersheds, although a recharge hotspot associated with some of Michigan's most valued rivers is almost entirely unprotected. Species representation in protected areas differed significantly among obligate aquatic, wetland, and terrestrial species, with representation generally highest for terrestrial species and lowest for aquatic species. Our results illustrate the need to further evaluate and address the representation of freshwater features within protected areas and the value of broadening gap analysis and other protected‐areas assessments to include key ecosystem processes that are requisite to long‐term conservation of species and ecosystems. We conclude that terrestrially oriented protected‐area networks provide a weak safety net for aquatic features, which means complementary planning and management for both freshwater and terrestrial conservation targets is needed.  相似文献   

8.
Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites’ conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds.  相似文献   

9.
The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites.  相似文献   

10.
Abstract:  The Iberian Peninsula harbors about 50% of European plant and terrestrial vertebrate species and more than 30% of European endemic species. Despite the global recognition of its importance, the selection of protected areas has been ad hoc and the effectiveness of such choices has rarely been assessed. We compiled the most comprehensive distributional data set of Iberian terrestrial plant and vertebrate species available to date and used it to assess the degree of species representation within existing protected areas. Existing protected areas in Spain and Portugal reasonably represented the plant and animal species we considered (73–98%). Nevertheless, species of some groups (amphibians, reptiles, birds, and gymnosperms) did not accumulate in protected areas at a rate higher than expected by chance ( p > 0.05). We determined that to conserve all vertebrate and plant species in the Iberian Peninsula, at least 36 additional areas are needed. Selection of additional areas for conservation would be facilitated if such areas coincided with sites of community importance (SCI) designated under the European Commission Habitats Directive. Additional areas required for full representation of the selected plant and animal species all coincide with SCI in Spain. Nevertheless, the degree of coincidence varies between 0.3% and 74.6%, and there is a possibility that important areas for conservation occur outside the SCI. Our results support the view that current SCI can be used for prioritization of areas for conservation, but a systematic reevaluation of conservation priorities in Spain and Portugal would be necessary to ensure that effective conservation of one of European's most important biodiversity regions is achieved.  相似文献   

11.
The Convention on Biological Diversity's (CBD) strategic plan will expire in 2020, but biodiversity loss is ongoing. Scientists call for more ambitious targets in the next agreement. The nature-needs-half movement, for example, has advocated conserving half of Earth to solve the biodiversity crisis, which has been translated to protecting 50% of each ecoregion. We evaluated current protection levels of ecoregions in the territory of one of the CBD's signatories, the European Union (EU). We also explored the possible enlargement of the Natura 2000 network to implement 30% or 50% ecoregion coverage in the EU member states’ protected area (PA) network. Based on the most recent land-use data, we examined whether ecoregions have enough natural area left to reach such high coverage targets. We used a spatially explicit mixed integer programing model to estimate the least-cost expansion of the PA network based on 3 scenarios that put different emphasis on total conservation cost, ecological representation of ecosystems, or emphasize an equal share of the burden among member states. To realize 30% and 50% ecoregion coverage, the EU would need to add 6.6% and 24.2%, respectively, of its terrestrial area to its PA network. For all 3 scenarios, the EU would need to designate most recommended new PAs in seminatural forests and other semi- or natural ecosystems. Because 15 ecoregions did not have enough natural area left to implement the ecoregion-coverage targets, some member states would also need to establish new PAs on productive land, allocating the largest share to arable land. Thirty percent ecoregion coverage was met by protecting remaining natural areas in all ecoregions except 3, where productive land would also need to be included. Our results support discussions of higher ecoregions protection targets for post-2020 biodiversity frameworks.  相似文献   

12.
After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human‐induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species’ suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade‐offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native species (Target 12). Synergies between targets must be identified and secured soon and trade‐offs must be minimized before the options for co‐benefits are reduced by human pressures.  相似文献   

13.
Knowing how much biodiversity is captured by protected areas (PAs) is important to meeting country commitments to international conservation agreements, such as the Convention on Biological Diversity, and analyzing gaps in species coverage by PAs contributes greatly to improved locating of new PAs and conservation of species. Regardless of their importance, global gap analyses have been conducted only for a few taxonomic groups (e.g., mangroves, corals, amphibians, birds, mammals). We conducted the first global gap analysis for a complete specious plant group, the highly threatened Cactaceae. Using geographic distribution data of 1438 cactus species, we assessed how well the current PA network represents them. We also systematically identified priority areas for conservation of cactus species that met and failed to meet conservation targets accounting for their conservation status. There were 261 species with no coverage by PAs (gap species). A greater percentage of cacti species (18%) lacked protection than mammals (9.7%) and birds (5.6%), and also a greater percentage of threatened cacti species (32%) were outside protected areas than amphibians (26.5%), birds (19.9%), or mammals (16%). The top 17% of the landscape that best captured covered species represented on average 52.9% of species ranges. The priority areas for gap species and the unprotected portion of the ranges of species that only partially met their conservation target (i.e., partial gap) captured on average 75.2% of their ranges, of which 100 were threatened gap species. These findings and knowledge of the threats affecting species provide information that can be used to improve planning for cacti conservation and highlight the importance of assessing the representation of major groups, such as plants, in PAs to determining the performance of the current PA network.  相似文献   

14.
Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a network of protected areas. We show that designing corridors for single species based on purely ecological criteria leads to extremely expensive linkages that are suboptimal for multispecies connectivity objectives. Similarly, acquiring the least‐expensive linkages leads to ecologically poor solutions. We developed algorithms for optimizing corridors for multispecies use given a specific budget. We applied our approach in western Montana to demonstrate how the solutions may be used to evaluate trade‐offs in connectivity for 2 species with different habitat requirements, different core areas, and different conservation values under different budgets. We evaluated corridors that were optimal for each species individually and for both species jointly. Incorporating a budget constraint and jointly optimizing for both species resulted in corridors that were close to the individual species movement‐potential optima but with substantial cost savings. Our approach produced corridors that were within 14% and 11% of the best possible corridor connectivity for grizzly bears (Ursus arctos) and wolverines (Gulo gulo), respectively, and saved 75% of the cost. Similarly, joint optimization under a combined budget resulted in improved connectivity for both species relative to splitting the budget in 2 to optimize for each species individually. Our results demonstrate economies of scale and complementarities conservation planners can achieve by optimizing corridor designs for financial costs and for multiple species connectivity jointly. We believe that our approach will facilitate corridor conservation by reducing acquisition costs and by allowing derived corridors to more closely reflect conservation priorities.  相似文献   

15.
The EU Habitats Directive (92/43/EEC) does include provisions for setting up the Natura 2000-network of protected areas based on listed species and habitats, and in addition specific regulations on species protection. Three Quarters of all designated sites (SCI’s) do not only include natural habitat types in a strict sense like forests or water-bodies, but also agricultural land. 18?% of the SCI’s even include between 25 and 50?% agricultural land and 24?% above 50?%. 48 species and three habitat types listed under the Habitats Directive have a clear focus in agriculture. Another eleven habitat types are dependant from a nature-friendly low intensity use or management. A large proportion of these habitats and species are actually in an unfavourable conservation status. The paper analyses the impact of EU nature conservation on agriculture based on the species and habitats falling under the Habitats Directive. On the other hand indirect negative influences of agriculture are discussed, that may have considerable impact on the future development of the conservation status of endangered habitats and species.  相似文献   

16.
Abstract:  Europe is one of the world's most densely populated continents and has a long history of human-dominated land- and seascapes. Europe is also at the forefront of developing and implementing multinational conservation efforts. In this contribution, we describe some top policy issues in Europe that need to be informed by high-quality conservation science. These include evaluation of the effectiveness of the Natura 2000 network of protected sites, implications of rapid economic and subsequent land-use change in Central and Eastern Europe, conservation of marine biodiversity and sustainability of fisheries, the effect of climate change on movement of species in highly fragmented landscapes, and attempts to assess the economic value of ecosystem services and biodiversity. Broad policy issues such as those identified are not easily amenable to scientific experiment. A key challenge at the science–policy interface is to identify the research questions underlying these problem areas so that conservation science can provide evidence to underpin future policy development .  相似文献   

17.
Abstract: Protected areas must be close, or connected, enough to allow for the preservation of large‐scale ecological and evolutionary processes, such as gene flow, migration, and range shifts in response to climate change. Nevertheless, it is unknown whether the network of protected areas in the United States is connected in a way that will preserve biodiversity over large temporal and spatial scales. It is also unclear whether protected‐area networks that function for larger species will function for smaller species. We assessed the connectivity of protected areas in the three largest biomes in the United States. With methods from graph theory—a branch of mathematics that deals with connectivity and flow—we identified and measured networks of protected areas for three different groups of mammals. We also examined the value of using umbrella species (typically large‐bodied, far‐ranging mammals) in designing large‐scale networks of protected areas. Although the total amount of protected land varied greatly among biomes in the United States, overall connectivity did not. In general, protected‐area networks were well connected for large mammals but not for smaller mammals. Additionally, it was not possible to predict connectivity for small mammals on the basis of connectivity for large mammals, which suggests the umbrella species approach may not be an appropriate design strategy for conservation networks intended to protect many species. Our findings indicate different strategies should be used to increase the likelihood of persistence for different groups of species. Strategic linkages of existing lands should be a conservation priority for smaller mammals, whereas conservation of larger mammals would benefit most from the protection of more land.  相似文献   

18.
Data on the location and extent of protected areas, ecosystems, and species’ distributions are essential for determining gaps in biodiversity protection and identifying future conservation priorities. However, these data sets always come with errors in the maps and associated metadata. Errors are often overlooked in conservation studies, despite their potential negative effects on the reported extent of protection of species and ecosystems. We used 3 case studies to illustrate the implications of 3 sources of errors in reporting progress toward conservation objectives: protected areas with unknown boundaries that are replaced by buffered centroids, propagation of multiple errors in spatial data, and incomplete protected‐area data sets. As of 2010, the frequency of protected areas with unknown boundaries in the World Database on Protected Areas (WDPA) caused the estimated extent of protection of 37.1% of the terrestrial Neotropical mammals to be overestimated by an average 402.8% and of 62.6% of species to be underestimated by an average 10.9%. Estimated level of protection of the world's coral reefs was 25% higher when using recent finer‐resolution data on coral reefs as opposed to globally available coarse‐resolution data. Accounting for additional data sets not yet incorporated into WDPA contributed up to 6.7% of additional protection to marine ecosystems in the Philippines. We suggest ways for data providers to reduce the errors in spatial and ancillary data and ways for data users to mitigate the effects of these errors on biodiversity assessments. Efectos de Errores y Vacíos en Conjuntos de Datos Espaciales sobre la Evaluación del Progreso de la Conservación  相似文献   

19.
To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of “importance to biodiversity,” perhaps they may now be. We analyzed location biases in PAs globally over historic (pre‐2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected‐area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties.  相似文献   

20.
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1–43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号