首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As an initial step in our study of nitrogen metabolism in the coral/algal symbiosis we have purified glutamate dehydrogenase (EC 1.4.1.4) to homogeneity from polyp tissue of the staghorn coral Acropora formosa collected from Magnetic Island (North Queensland) in 1985–1986. The purified enzyme had a specific activity of 78 U mg-1. The native enzyme had a relative molecular weight, M r, of 360 000 (±20 000), and appears to be a hexamer with subunits of M r=56000 (±3 000). Like the enzyme from other coelenterates, the coral glutamate dehydrogenase (GDH) was absolutely specific with respect to the coenzyme substrate (NADP+/NADPH), and was insensitive to allosteric regulation by nucleotides; unlike other coelenterate GDHs, the coral enzyme was absorlutely specific for ammonium as amino group donor in the reductive amination reaction, and major differences in kinetic properties were apparent. Linear Michaelis-Menten kinetics were observed for the substrates a-ketoglutarate, NADPH and NADP+, the K m values being 0.93, 0.11 and 0.03 mM, respectively. However glutamate dehydrogenase displayed biphasic kinetics with respect to l-glutamate and ammonium, indicating two apparent K m values (18 and 81 mM for l-glutamate and 9.2 and 416 mM for ammonium). The enzyme also exhibits Scatchard plots, Hill coefficients and cooperativity indices characteristic of enzymes displaying negative cooperativity.  相似文献   

3.
The marine flagellate Dunaliella marina responds to hypotonic media in the same way as animal cells: an initial phase of osmotic swelling occurs, followed by a second, more prolonged phase of cell shrinkage — the volume-regulation phase. D. marina also volume-regulates in hypertonic media. This does not usually occur in animal cells exposed to normal concentrations of K+. Copper concentrations of 2 ppm and higher inhibit regulation of cell volume in D. marina transferred to hypotonic media. This is probably due to reduced cell-membrane permeability to K+ and/or Cl- and not to an interference with the Na+/K+ exchange pump. These findings suggest that volume regulation is functionally independent of the Na+/K+ exchange pump. The method described herein appears to be a suitable biotest for pollutants, providing specific information on their effects on the permeability of cell membrane.  相似文献   

4.
The osmoregulatory abilities of one freshwater and two brackish water (Baltic Sea) populations of the euryhaline teleost fish Gasterosteus aculeatus were studied with respect to evolutionary physiology. Plasma osmolality, activities of Na+K+-ATPase, citrate synthase, creatine kinase in the gill and free amino acids in liver, axial muscle and pectoral fin muscle were measured. After transfer from 10 to 35 ppt at 15 °C, time-course changes of plasma osmolality and gill Na+K+-ATPase showed no significant fundamental differences between the freshwater and one of the Baltic Sea populations. In a multi-factorial experiment, each population was exposed to four different abiotic regimes. Both brackish water populations had high mortality in freshwater at 4 °C, which is discussed as a failure of osmotic regulation (reduced taurine concentrations). Freshwater specimens had higher levels of glycine in the axial and pectoral fin muscles compared to the brackish water populations. This is interpreted as a genetically based effect. In brackish (20 ppt) water of 15 °C, the freshwater population had high activities of Na+K+-ATPase, but low activities of creatine kinase, whereas both brackish water populations behaved in the opposite way. A fundamental difference between the freshwater and brackish water populations on the level of the osmoregulatory machinery was not observed. Received: 10 December 1998 / Accepted: 22 September 1999  相似文献   

5.
Patterns of nine intracellular free amino acids (FAA), which are utilized as organic osmolytes for salinity-induced cell volume regulation in marine osmoconformers, were compared in five Macoma balthica populations and seven Mytilus spp. populations along their European distribution. Three types of FAA patterns were classified within both taxa: a northern Baltic type, a southern Baltic type and an Atlantic/Mediterranean type which mainly differ regarding the share of alanine and taurine. Differences are discussed in relation to habitat salinity and population genetics. Along a salinity gradient, the total size of the intracellular FAA pool did not differ between sympatric M. balthica and Mytilus spp., and was significantly correlated with habitat osmolality in a range from 70 to 600 mmol kg−1 H2O (oligohaline to mesohaline) in both bivalves. In M. balthica, this correlation was mainly based on significant correlations of alanine (15–100 mmol kg−1 DW), glycine (30–100 mmol kg−1 DW) and taurine (0–70 mmol kg−1 DW) with habitat osmolality. In Mytilus spp., only glycine (25–100 mmol kg−1 DW) and taurine (4–180 mmol kg−1 DW) were significantly correlated with habitat osmolality. The concentration of alanine was three times lower in Mytilus spp. than in M. balthica and did not correlate with habitat osmolality. Within a habitat osmolality range from 600 to 1,100 mmol kg−1 H2O (mesohaline to marine) the concentration of FAA remained constant in both taxa. It is suggested that under marine conditions additional organic osmolytes must become more important for cell volume regulation in Macoma and Mytilus.  相似文献   

6.
Maximum substrate and cosubstrate affinity, as judged by the Michaelis constant (K M ), of NADP+-dependent isocitrate dehydrogenase of pig heart (purchased from Boehringer, Mannheim, FRG) is attained at 37°C. If K M -values of substrate (Isocitrate, IC) and cosubstrate (NADP+) of NADP+-dependent isocitrate dehydrogenase (ICDH) of the white dorsal muscle of Idus idus L. is plotted against the experimental temperature (VT), W-shaped curves result. With increasing adaptation temperature (AT), there is a shift to increasing VT. It is suggested that the W-shaped curves are due either to the simultaneous presence of two multiple forms of the enzyme, or to the reversible temperature-dependent interconversion of one protein species.  相似文献   

7.
The presence and characteristics of a membrane-bound adenylate cyclase from Mytilus galloprovincialis Lmk posterior adductor muscle have been investigated. The enzyme has a Michaelis constant (K m) of 0.38 mM at 20°C and requires divalent cations (Mg2+/Mn2+) for its activity. Optimal GTP concentrations are between 10-5 and 10-4 M. The non-hydrolizable GTP-analogues GMPpNHp and GTPS increase the activity of the enzyme four- to ten-fold. Sodium fluoride stimulates the enzymatic activity seven- to eight-fold. Forskolin increases the enzymatic activity two- to three-fold. Serotonin stimulates the adenylate cyclase activity in a dose-dependent manner. These experiments were performed with mussels collected from the estuary of Muros, Spain, in 1990.  相似文献   

8.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

9.
J. Otto  S. K. Pierce 《Marine Biology》1981,61(2-3):185-192
In order to study the interaction of the extracellular and intracellular osmoregulatory systems of the bivalve Rangia cuneata, we have measured blood osmotic and ionic concentrations together with intracellular free amino acid concentrations and total tissue water under identical salinity conditions. Like freshwater bivalves, the blood of R. cuneata is maintained hyperosmotic (50 mOsm) to the environment in salinities below 110 mosm by the regulation of Na+, Cl-, K+ and Ca2+ concentrations. On the other hand in company with marine bivalves, R. cuneata also regulates intracellular free amino acids (FAA) as a mechanism to control cellular volume during osmotic stress over the entire non-lethal salinity range (3 to 620 mOsm). Alanine is the predominant intracellular osmotic effector. Thus, by utilizing the osmoregulatory mechanisms of both marine and freshwater bivalves, R. cuneata is able to tolerate salinities ranging from freshwater to 25 ppt and to traverse the faunal salinity boundary, known as the horohalinicum (5 to 8 ppt), controlling cell volume throughout.Please address requests for reprints to Dr. S. K. Pierce  相似文献   

10.
Chlorella autotrophica Shihira and Krauss (clone 580), a euryhaline microalga from the marine coastal environment is subject to large fluctuations in external salinity and nitrogen supply. The alga exhibits maximum growth at salinities lower than 100% ASW (artificial seawater). Cells divide faster and show higher cell yields when the supply of either NH 4 + or NO 3 - is increased above 0.2 mM. Cells growing on NH 4 + show high levels of NADPH-glutamate dehydrogenase (GDH) activity, and the levels of glutamine synthetase (GS) are decreased to very low levels under these conditions. Methionine sulfoximine (MSX), an inhibitor of GS, has little effect on cell division and nitrogen assimilation of cells growing on NH 4 + . Cells growing on NO 3 - , however, show marked inhibition (65%) in nitrogen assimilation in the presence of 5 mM MSX. This MSX concentration also causes growth retardation and a progressive decrease in cell protein and nitrogen content. GS is almost completely inhibited by 5 mM MSX in both NH 4 + and NO 3 - -grown cells. Cells growing on NH 4 + maintain high levels of NADPH-GDH activity in the presence of MSX. NADPH-GDH activity in MSX-treated NO 3 - -grown cells increases, and, in the presence of 5 mM MSX, reaches 40% of the level found in NH 4 + -grown cells. These results are consistent with NADPH-GDH providing an alternate pathway for NH 4 + assimilation by this marine Chlorella species.  相似文献   

11.
In fast, glycolytic muscles, oxidative phosphorylation presumably facilitates recuperation from exhaustive exercise and supports growth and maintenance metabolism. Given the shifts in pH with extensive glycolytic activity, the pH optima of mitochondrial processes should indicate whether mitochondria are adapted for recuperation from exercise or for growth and maintenance. We examined this question using mitochondria from the phasic adductor muscle of the scallop, Euvola (Pecten) ziczac, collected from the Golfo de Cariaco, Venezuela in 1992 and 1993. Scallop muscle mitochondria showed well coupled oxidation of glutamate and pyruvate at pH 7.0 and 6.4. The preferred substrates (glutamate, pyruvate and succinate) were oxidized at approximately 40 nmol O2 min-1 mg-1 mitochondrial protein at 25°C, while malate and glutamine were oxidized at 75% and proline at 30% of these rates. Neither palmitoyl carnitine nor aspartate were oxidized. Succinate oxidation was not coupled to ADP utilization at pH 7.0 but was somewhat coupled at pH 6.4. Generally, State 3 rates of oxygen uptake were similar at pH 7.0 and 6.4. Maximal rates of oxidation of glutamate and pyruvate showed broad pH optima. For both glutamate and pyruvate, the highest respiratory control ratio (RCR) values were found at pH 6.5. The saturation curves of scallop muscle mitochondria for pyruvate, glutamate and ADP were well described by the Michaelis-Menten equation. The affinity for pyruvate was greater at pH 6.4 (apparent K m, app=0.013 mM) than at pH 7.0 (K m, app=0.026 mM) while the affinity for ADP (K m, app=0.015 mM) and that for glutamate (K m, app=0.55 mM) changed little with pH. The ADP affinity was the same whether pyruvate or glutamate was the carbon substrate. The combination of maintenance of sensitivity to ADP with an enhanced affinity for pyruvate at acidic pH values should facilitate recuperation from bouts of glycolytic activity. Scallops harvested in September and those harvested in January differed in the maximal rates of glutamate and pyruvate oxidation.  相似文献   

12.
Using the starvation technique, changes in protein and free amino acids were examined in Penaeus esculentus Haswell collected from Moreton Bay, Australia, by trawling in 1985. Prawns of 17.7±0.26 g wet weight were held at 25°C until 2 d after moulting. Groups of seven or eight were then starved fro 5, 10, or 15 d, with appropriate control groups. At the end of each period, ecreted amino acids were collected for 24 h and whole-muscle amino acids and free amino acids (FAA) g-1 in each prawn were analysed. Concentrations of whole-muscle amino acids showed only minor changes with starvation, but concentrations of many of the FAA changed significantly. Total FAA averaged 1 182±45 mol g-1 dry weight. Individual FAA, in order of abundance, were glycine, arginine, proline, taurine, threonine, hydroxyproline, alanine, glutamic acid, valine, aspartic acid and lysine; the remaining FAA each contributed <0.2% of the total. Only taurine and alanine did not show significant changes with starvation. Concentrations of glycine, arginine, hydroxyproline, glutamic and aspartic acid increased, while those of proline, threonine, valine and lysine decreased with starvation, that of proline approaching zero after 15 d starvation. Excreted amino acid-nitrogen represented <2% of excreted ammonianitrogen ornithine being the most abundant (35%), followed by leucine (22%) and lysine (17%). The relative abundance of excreted amino acids did not correspond with those of the FAA. It is suggested that, as starvation progresses, the muscle protein is progressively hydrolysed, but with the remaining muscle maintaining its amino acid composition. The liberated amino acids enter the FAA pool and become available for energy production. Proline may have an important role as an energy source, but the ability to synthesise proline may be limited, and thus the artificial food of penaeid prawns may be improved by its addition.  相似文献   

13.
Bostrychus sinensis is a facultative air breather that inhabits waters of a wide range of salinities. This study aimed to elucidate whether branchial and intestinal osmoregulatory acclimation occurred in B. sinensis transferred from 5‰ water through a progressive increase in salinities to seawater. Our results indicate that B. sinensis acted as a hyperosmotic regulator in 5‰ water, but exhibited hypoosmotic hypoionic regulation in seawater. During short- (1 day) and medium- (10 days) term acclimation to seawater, there were only minor perturbations in plasma osmolality and [Na+], which returned to control levels after 45 days of exposure to seawater. Branchial Na+/K+-ATPase activity was unaffected by 1, 10 or 45 days of exposure to seawater. However, prolonged (45 days) acclimation to seawater led to a significant increase in Na+/K+-ATPase α-subunit protein abundance. Taken together, these results indicate that there could be changes in the expression of Na+/K+-ATPase isoforms and/or post-translational modification of Na+/K+-ATPase in the gills of fish exposed to seawater. Immunofluorescence microscopy revealed that acclimation to seawater for 10 days only resulted in no change in branchial Na+/K+-ATPase protein expression, but there were increases in protein expression of cystic fibrosis transmembrane regulator (CFTR)-like chloride channel and Na+:K+:2Cl cotransporter (NKCC; probably NKCC1). Indeed, NKCC was undetectable in gills of fish kept in 5‰ water by Western blotting, but it became weakly detectable in fish exposed to seawater for 10 days and prominently expressed in fish exposed to seawater for 45 days. Therefore, our results indicate that branchial CFTR-like chloride channel and NKCC1 were the determining factors in the transition between hyperosmotic regulation and hypoosmotic hypoionic regulation in B. sinensis. Furthermore, the intestine of B. sinensis also served as an important osmoregulatory organ, since there were significant increases in both the activity and protein abundance of intestinal Na+/K+-ATPase in fish acclimated to seawater for 45 days. The effectiveness of branchial and intestinal osmoregulatory acclimation in B. sinensis during seawater acclimation led to only a minor increase in plasma osmolality, and thus resulted in relatively unchanged free amino acid contents in muscle and liver.  相似文献   

14.
Sodium- and potassium-activated ATPase (Na+–K+-ATPase) has been demonstrated in excretory organs of Sepia officinalis, using a cytochemical procedure. In the renal appendages, both epithelia of the pancreatic appendages, the folded epithelium of the branchial heart appendage and the transport-active epithelium of the gill, the enzyme is localized exclusively in the basolateral cell membranes, i.e., the membranes of the basal labyrinth and the lateral plasma membranes. In addition, Na+–K+-ATPase is also located in the sarcolemma of the muscle fibres of the branchial heart. Distribution and localization of the enzyme is further substantiated by [3H]-ouabain autoradiography. The possible involvement of Na+–K+-ATPase in the excretion of ammonia and in ionic regulation in dibranchiate cephalopods is discussed.This study was supported by the Deutsche Forschungsgemeinschaft and is part of a doctoral dissertation  相似文献   

15.
Octopine dehydrogenase from the nemertean Cerebratulus lacteus was purified over 1000-fold to almost homogeneity. The enzyme does not bind to arginine Sepharose 4B. It has a monomeric structure with a relative molecular mass of 40000. Two isoenzymes were identified with isoelectric points of 5.6 and 5.4, whereas the purified isoenzymes of Pecten jacobaeus adductor mucles (which bind to arginine Sepharose 4B) had lower IEP's of 4.9 and 4.7. Apparent Km's of the nemertean ODH for arginine and pyruvate are dependent on the respective co-substrate concentration. This phenomenon may result in activation of ODH and, thus, production of octopine in locomotory highly active individuals while attacking food, especially when this takes place in a hypoxic habitat, such as decaying mud near the high-water mark. The apparent Km's for octopine (0.22 mM) and NAD+ (14 M) are low. Octopine is a substrate inhibitor for the reverse reaction above 2 mM, and a product inhibitor of the forward reaction by 50% at 1.2 mM. Therefore, only small amounts of octopine are likely to accumulate in vivo. Amino acid substrate specificity is limited to guanidino amino acids. We believe that the amino acid substrate specificity is not an evolutionary modification, but rather that it is narrowed to guanidino amino acids (or even specificity to arginine) in those species where ODH has a physiological function in maintaining redox balance during exercise. The specificity for keto acids is dependent on chain length, (-ketobutyrate>-ketocapronate); a second carboxyl group inactivates the enzyme.  相似文献   

16.
三甲基氯化锡对斑马鱼(Danio rerio)生理生化特性的影响   总被引:1,自引:1,他引:1  
为初步探讨三甲基氯化锡(trimethyltin chloride,TMT)对鱼类的毒性效应以及评价环境中TMT的安全性,采用静态鱼类急性毒性试验法测定了TMT对斑马鱼(Danio rerio)生理生化指标的影响;参考TMT的96 h-LC50值,设定3个浓度(0.39、0.78和1.17 mg·L-1)处理斑马鱼,测...  相似文献   

17.
The properties of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from gill tissue of the tanner crab Chionocetes bairdi, and lactate dehydrogenase (LDH) and glyceraldehyde dehydrogenase from skeletal muscle of C. bairdi and the yellowfin sole Limanda aspera were examined over the physiological temperature range of the animals. Both animals were obtained in the Bering Sea in winter, and their enzymes appear to be remarkably cold-adapted. Affinity of sole LDH for substrate appears to increase with decreasing temperature, thus keeping reaction rate essentially independent of temperature at physiological concentrations of the substrate. Calculated values of activation energy are low, in keeping with the argument that organisms from cold environments have enzymes with a reduced energy of activation. In addition, Hill plots of the substrate saturation curves for lactate dehydrogenase from muscle of sole indicate that there is a facilitation of allosteric behaviour at low temperatures. Maximum affinity of sole LDH for substrate in the absence of univalent cations occurs at 3°C, while in the presence of 150 mN K+, it occurs between 0° to-2°C. The effects of Mg2+ on enzyme activity appear to be determined by concentration of substrate and temperature. Thus, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase are stimulated more effectively by Mg2+ at low temperature and at low substrate levels whereas, at high concentrations of substrate, they are relatively independent of the bivalent cation. All four dehydrogenases are affected by the univalent cations Na+, K+ and NH4 + in a manner which appears to be determined, in part at least, by concentration of substrate and by temperature. These findings suggest mechanisms for the maintenance and regulation of enzyme activity in poikilothermic tissues at low and changing temperatures.  相似文献   

18.
The possible involvement of protein kinase C in control of ion transport was investigated on a preparation of isolated, perfused posterior gills of the Chinese crabsEriocheir sinensis (collected in 1989 from lakes near Emden, northern Germany) acclimated to fresh water. 1-oleyl-2-acetyl-sn-glycerol (OAG) and phorbol 12-myristate 13-acetate (PMA), two activators of protein kinase C, when added to the perfusion saline, induced depolarisation of the transepithelial potential difference (PD) and an increase in transepithelial Na+ influx. The observed increase was proportional to OAG concentration up to 250µM, with a 2.5× accelerated Na+ influx. OAG and PMA remained without effect on Cl fluxes. The observed effects were in agreement with an activation, via protein kinase C, of the Na+/K+ ATPase located on the serosal side of the epithelium.  相似文献   

19.
The major inorganic and organic osmolytes responsible for hydrating the oocytes during pre-ovulatory meiotic maturation in autumn- and spring-spawning stocks of Atlantic herring are examined. Despite the ovulated eggs of spring-spawning herring being 1.6- to 2-fold larger than the autumn-spawning stock, the GSI (27 ± 3%) and degree of oocyte hydration (70–72% water) were similar. Normalising the data with respect to dry mass revealed that the physiological mechanisms underlying the maturational influx of water were the same for both classes of egg. Cl, K+ and Pi together with a small pool of free amino acids (FAA) represented the driving forces for oocyte hydration. K+ (autumn and spring) and Pi (spring) maintained their concentrations in the ovulated eggs, while all other ions, including Cl, Na+, NH4 + and Mg2+ were significantly diluted. In contrast the FAA concentration increased during the hydration process. Amongst the inorganic ions, Cl showed the greatest increase in the ovulated eggs. The FAA content doubled from 1.5 to 3.3% of dry mass during oocyte hydration and accounted for 29% of the calculated ovoplasmic osmolality in the ovulated eggs from both autumn- and spring-spawners. This significant osmotic effect of the small pool of FAA was due to the low water content of the benthic eggs. The differential movement of the inorganic and organic osmolytes that underly oocyte hydration in Atlantic herring are discussed in relation to current models of transmembrane ion flux.  相似文献   

20.
Inhibition of Na+/K+-ATPase from gill plasma membranes of the shore crab Carcinus maenas by cadmium was investigated and compared with inhibitory effects by known antagonists (ouabain and Ca2+). For comparative considerations the Cd2+-inhibition of the enzyme from dog kidney was also tested. Na+/K+-ATPase from dog kidney and from crab gill differed greatly in sensitivity against ouabain. The inhibition constant K i of the dog enzyme amounted to 9.1 × 10−7 mol l−1, i.e. more than 300-fold smaller than the K i of 2.9 × 10−4 mol l−1 determined for the crab enzyme. Ca2+ inhibited the activity of Na+/K+-ATPase from crab gill plasma membranes with a K i of 4.3 × 10−4 mol l−1. The Na+/K+-ATPase from crab gill was inhibited by Cd2+ with a K i of 9.1 × 10−5 mol l−1. Cd2+ inhibited the Na+/K+-ATPase from dog kidney with a K i (6.4 × 10−5 mol l−1) comparable to that observed in the crab gill enzyme. Under experimental conditions Cd2+-inhibition of Na+/K+-ATPase was irreversible. Repeated washing, centrifugation and homogenization of the plasma membranes (four times) with Cd2+-free buffer did not restore any activity lost in the presence of 1 × 10−3 mol l−1 Cd2+. Since ouabain-insensitive (nonspecific) ATPases in the plasma membrane fraction of crab gills were inhibited by Cd2+ in the same way as Na+/K+-ATPase, the heavy metal is considered as an unspecific ATPase inhibitor. Comparing these results with literature data on Cd2+-binding to electrophoretically separated proteins suggests that Na+/K+-ATPase is a Cd2+-binding enzyme. The results obtained on Na+/K+-ATPase were reflected by Cd2+-inhibition of the branchial ion-transport functions depending on this enzyme. The transepithelial short-circuit current of isolated gill half lamellae, a direct measure of area-specific active ion uptake, and the transepithelial potential difference of isolated, perfused whole gills, also indicative of active ion uptake, were inhibited by the heavy metal in a time- and dose-dependent mode. Remarkably these inhibitions were also irreversible. These findings are ecologically and biomedically significant: even when the actual environmental or tissue concentrations measured are low, biological microstructures such as Na+/K+-ATPase may accumulate the heavy metal by tight binding over prolonged periods until the first inhibitory effects occur. Received: 25 June 1997 / Accepted: 25 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号