首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Joint Implementation (JI) and theClean Development Mechanism (CDM) have beenestablished under the United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol asproject-based instruments to mitigategreenhouse gases of the industrialisedcountries to the levels imposed by theirKyoto commitments. An outstanding issueassociated with the implementation of thesetwo flexibility mechanisms concerns thechoice of appropriate baseline forcalculating the emission reductions. Thispaper applies a computerised tool thatconstructs and compares different types ofstandardised baselines for projects inIndonesia, Panama and the RussianFederation. It evaluates the effects of theselection of different baselines to theenvironmental integrity of the two Kyotomechanisms.  相似文献   

2.
Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the United States and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, we review the issues involved in MERV activities. We identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency and the persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (6) reporting by multiple project participants; (7) verification of GHG reduction credits; (8) uncertainty and risk; (9) institutional capacity in conducting MERV; and (10) the cost of MERV.  相似文献   

3.
Economic incentives for sequestering atmospheric carbon dioxide (CO2) in forests may be an effective way to meet greenhouse gas (GHG) reduction commitments under the Kyoto Protocol (KP). But concerns have been raised that the KP may create unintended incentives to excessively harvest existing forests if regenerated forests qualify for carbon (C) credits under the reforestation provision of Article 3.3. This paper combines an analytical model of the optimal forest rotation with both timber and C as priced outputs with data on timber and C growth and yield to different forest settings in the U.S. C prices of $50 per megagram (Mg) – the highest price evaluated– can considerably lengthen forest rotations (40 years or more), raise forest land values (as much as $1,900 per hectare), and sequester more C in the long run (up to 60 percent per acre), relative to the base case of no C compensation. However, if C payments are made for the regenerated stand only, in some situations, it is optimal to immediately harvest an otherwise premature stand at C prices as low as $20/Mg. The strength of perverse incentives to accelerate harvesting of existing forest varies by forest type, region, C price level, and institutional factors relevant to the compensation system. If C compensation were extended to existing stands, as may be possible under Article 3.4 of the KP, the perverse incentives for prematurely harvesting existing stands would not exist.  相似文献   

4.
In this paper, we present an overview of guidelinesdeveloped for the monitoring, evaluation, reporting,verification, and certification (MERVC) ofenergy-efficiency projects for climate changemitigation. The monitoring and evaluation ofenergy-efficiency projects is needed to determine moreaccurately their impact on greenhouse gas (GHG)emissions and other attributes, and to ensure that theglobal climate is protected and that countryobligations are met. Reporting, verification andcertification will be needed for addressing therequirements of the Kyoto Protocol. While the cost ofmonitoring and evaluation of energy-efficiencyprojects is expected to be about 5–10% of a project'sbudget, the actual cost of monitoring and evaluationwill vary depending on many factors, including thelevel of precision required for measuring energy andGHG reductions, type of project, and amount of fundingavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号