首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用序批式活性污泥反应器(ASBR),通过调整进水C/N和S/N,在活性污泥体系中探究电子受体有限的条件下,不同电子供体(有机物或者S2-)对反硝化和硝酸盐氮异化还原成铵(DNRA)过程的影响.结果 表明:较高的C/N进水条件,有利于反硝化过程的进行;而较高的S/N进水条件,更有利于DNRA过程的发生;DNRA过程的特...  相似文献   

2.
采用SBBR反应器,以硝酸盐和硫化钠为基质,探索了4种进水S/N对自养硝酸盐异化还原成铵过程的影响。结果表明:在n(S)/n(N)≤1. 3时,系统主要进行硫自养反硝化过程; n(S)/n(N)≥1. 5时,系统内同时存在硫自养反硝化过程和硝酸盐异化还原成铵过程,在n(S)/n(N)=1. 5∶1时产铵最高; ORP对系统内的反应进程和反应类型有一定的指示作用。当发生完整的硫自养反硝化过程时,ORP会出现硝酸盐膝点和亚硝酸盐膝点。同时存在硫自养反硝化过程和硝酸盐异化还原成铵过程时,硝酸盐膝点和亚硝酸盐膝点重合。出现硝酸盐异化还原成铵过程的原因可能是硫化物浓度的增加,抑制反硝化作用,从而驱动部分电子从S~(2-)到NH_4~+。  相似文献   

3.
反硝化(DNF)和硝酸盐异养还原为氨(DNRA)是水域生态系统中硝酸盐异养还原的2个主要过程.DNF和DNRA之间的竞争控制着硝酸盐在水域生态系统中的异养还原方式和最终归趋.选取太湖流域的傀儡湖为研究对象,采用室内培养实验和稳定氮同位素示踪技术,考察傀儡湖沉积物-水界面的DNF和DNRA速率及其对硝酸盐异养还原过程的贡献.结果显示,沉积物表现为NH4+-N的源和NO3--N的汇,潜在DNF速率为18.89~54.00μmol/(kg·h)[均值(36.39±3.86)μmol/(kg·h)],DNRA反应速率为1.02~5.89μmol/(kg·h)[均值(3.21±1.15)μmol/(kg·h)].DNF与沉积物有机质含量和含水率存在显著的正相关关系,DNRA与沉积物需氧量(SOD)之间存在相关性.反硝化是傀儡湖中硝酸盐异养还原的主导过程,贡献率为84.23%~96.90%,而DNRA过程只占3.10%~15.77%.与海洋河口区域相比,淡水湖泊生态系统中DNRA速率和DNRA在硝酸盐异养还原中所占的比重均较小.  相似文献   

4.
代伟  赵剑强  丁家志  刘双 《环境科学》2019,40(8):3730-3737
采用稳定运行在高盐高碱环境厌氧/好氧/缺氧(A_n/O/A)模式下的序批式生物膜反应器(SBBR),考察在不同碳氮比(C/N)条件下,硝化反硝化过程及N_2O产生特征.结果表明,在C/N为5、2和对照组(C/N=0)时,总氮去除率分别为(98. 17±0. 42)%、(65. 78±2. 47)%和(44. 08±0. 27)%; N_2O的产生量分别为(32. 07±2. 03)、(21. 81±0. 85)和(17. 32±0. 95) mg·L~(-1); N_2O转化率(N_2O产生量在去除总氮中的比例)分别为(29. 75±0. 93)%、(30. 04±2. 17)%和(41. 69±0. 80)%.高盐高碱条件下,亚硝酸盐氧化菌(NOB)受到很强的抑制作用,硝化过程基本停留在亚硝酸盐阶段.由于高盐高碱环境对N_2O还原酶活性的抑制,使得异养反硝化过程产生了大量N_2O,随着碳氮比的增大,有更多的碳源用于反硝化过程,因而总氮去除率和N_2O产生量均随之增加.随着碳氮比的增大,N_2O转化率随之降低,这可能是由于异养反硝化过程氮素还原酶对电子的竞争所形成的,碳氮比越高,电子竞争越弱.高通量测序表明:在SBBR中,氨氧化细菌(AOB)被富集,而几乎不存在NOB;优势异养反硝化菌属主要是Thauera、Azoarcus和Gemmobacter.  相似文献   

5.
有机碳源对同时硝化/反硝化(SND)过程的影响   总被引:27,自引:1,他引:27  
究了同时硝化 反硝化 (SimultaneousNitrificationandDenitrification ,SND)体系中有机碳源对氨氮去除的影响。实验结果表明 ,在氨氮初始浓度为 35mg L时 ,存在使氨氮降解率达到 99 5 %以上的有机碳源浓度区间 ,其CODCr浓度为40 0mg L~ 10 0 0mg L ;为保证反应后期体系中C N维持在微生物所需的水平 ,提出了补料的方式 ,使得氨氮降解不会出现停滞阶段 ,可以达到较好的去除效果 ;在周期为 8h的连续序批式 (SBR)操作中 ,采用较高的有机碳源初始进料值 ,并在反应过程中进行补料 ,可以很好的将出水氨氮的浓度维持在较低值 (<5mg L)  相似文献   

6.
探究了4种低温水平下基于亚硝化的全程自养脱氮(CANON)型序批式生物膜反应器(SBBR)的运行效果及其氮素转化机制.结果表明,当CANON型SBBR在不同的低温水平下稳定运行后,其脱氮微生物优势菌群发生了不同程度的变化,随之改变了系统的氮素转化途径及其脱氮性能.当温度>15℃时,SBBR中AOB和anammox菌的丰度与活性未受到明显抑制,CANON作用始终是系统脱氮的主要途径,SBBR对TN的平均去除率亦较为理想;而当温度<15℃时,anammox菌的丰度与活性在10,5℃下分别出现不同程度的降低,进而改变了SBBR的氮素转化途径,使其脱氮性能出现不同程度的恶化.在10℃时,NOB的增殖及其活性的提高使硝化/反硝化作用取代CANON作用成为SBBR脱氮的主要途径,此时系统对TN的去除率骤降至(16.87±4.79)%;在5℃时,反硝化过程中第1步还原反应的停滞与反硝化菌对NO2--N利用率的提高使SBBR中氮素的去除依赖于CANON作用和短程硝化/反硝化作用的协同,系统对TN的去除率为(54.83±3.68)%.  相似文献   

7.
剩余污泥的高含水率限制了对其后续处理以及资源化利用. 为了改善污泥脱水性能,利用Fe3+/EDTA-2Na类芬顿试剂作为调理剂强化污泥脱水,通过粒径分析、差示扫描量热仪(DSC)、傅里叶红外光谱(FTIR)和扫描电子显微镜(SEM)等方法对剩余污泥进行表征,探究其强化脱水机理. 结果表明:经过氧化调理后的污泥泥饼含水率降至67.8%,并有62.32%的结合水得以释放. 污泥胞外聚合物(EPS)结构被氧化破解,紧密结合的胞外聚合物(TB-EPS)中的多糖和蛋白质浓度显著减少;污泥絮体减小,但从SEM图可以看出絮体结构变得规整、平滑,且出现不规则孔洞,增加了污泥水分的输送通道,改善了污泥的脱水性能. FTIR分析表明,氧化处理后的污泥清液中水的吸收峰变小,多糖和蛋白质对应的吸收峰增强,而富里酸对应的峰消失. 研究显示,基于Fe3+/EDTA-2Na类芬顿的污泥调理可以高效氧化破解污泥,提高污泥脱水性能.   相似文献   

8.
李洪静  陈银广  顾国维 《环境科学》2007,28(8):1681-1686
2个实验室规模的序批式反应器(SBRs)在厌氧-低氧(0.15~0.45 mg·L-1)条件下运行,以比较丙酸的加入对同时生物除磷脱氮系统的影响.结果表明,无论是丙酸与乙酸的混合酸(碳摩尔比为1.5/1)作为碳源(SBR1),还是乙酸作为单独碳源(SBR2),系统都发生同步硝化反硝化和磷的去除(SNDPR),并且氨氮被全部氧化,系统中没有亚硝酸盐的大量累积.与SBR2相比,SBR1中厌氧阶段磷释放量少,聚羟基戊酸(PHV)合成量高,好氧末磷剩余量少,硝态氮累积少,因此SBR1中总氮和总磷的去除率(分别为68%和95%)比SBR2(分别为51%和92%)高,加入丙酸有助于SNDPR系统保持较好的除磷、脱氮效果.  相似文献   

9.
卞荣星  孙英杰  李晶晶  张欢欢 《环境科学》2014,35(11):4371-4377
异位硝化-原位反硝化是实现填埋场渗滤液脱氮处理的一种有效措施,但硝化反硝化过程中会产生强温室气体N2O.实验构建了3个新鲜垃圾生物反应器填埋场模拟装置,分别回灌NO-3-N浓度为50、100和300 mg·L-1的渗滤液,考察垃圾原位反硝化过程中N2O产生规律及其影响因素.结果表明,回灌不同浓度硝酸盐,N2O产生量均表现为初期浓度较大-下降-后期升高的规律;N2O产生量与回灌NO-3-N量正相关,其累积产生量分别为36 481、44 241、86 264μg,但反硝化消耗单位硝酸盐氮产生的N2O量(以N计)以及N2O转化率与回灌硝酸盐氮量呈负相关,N2O平均转化率分别为8.84‰、5.68‰和2.34‰.分析认为,各反应器垃圾降解后期反硝化碳源不足是N2O产生量高的主要原因.  相似文献   

10.
不同曝气量对SBBR短程硝化微生物特性及氮转化的影响   总被引:2,自引:1,他引:2  
在实验室规模的序批式生物膜反应器(SBBR)中研究了不同曝气量(7.2、12.0、15.6L·h-1,对应反应器中平均溶解氧浓度分别为0.5、0.8、1.2mg·L-1)下生物膜的生物特性变化及短程硝化过程规律.结果表明:减小曝气量使反应器内溶解氧浓度降低,将导致生物膜的总生物量下降,生物膜中氨氧化菌逐渐成为优势菌,无论数量还是生物活性均高于亚硝酸氧化菌,利于亚硝酸盐积累;在一个反应周期中,生物膜对溶解氧需求的分配是不同的,曝气初期溶解氧主要用于异氧菌对COD的降解,其后用于氨氮转化.根据上述规律,提出在短程硝化过程中采用"梯级递减式曝气"供氧新策略,即在反应初期保持一种较大的曝气量,提高反应器溶解氧浓度,促进COD快速降解,随后保持一种小曝气量使反应器中溶解氧维持较低的浓度,从而促进亚硝酸盐积累及优化供氧效率.  相似文献   

11.
生物炭的施用对土壤铁(氢)氧化物还原、砷(As)的形态转化有重要作用,极大地影响了As的环境行为.本文研究了生物炭/AQDS(蒽醌-2,6-二磺酸盐)对含As(Ⅲ)水铁矿化学还原和异化还原的影响,探索了由此产生的非生物和生物过程中Fe和As的形态转化及次生矿物的形成.结果 表明,生物炭和AQDS的添加可以促进水铁矿的化...  相似文献   

12.
以华南稻田土壤为研究对象,通过室内模拟控制实验,研究了Fe (Ⅱ)对厌氧稻田土壤中反硝化过程及其功能微生物群落结构组成与相对丰度的影响.结果表明,加入Fe (Ⅱ)减缓了土壤中NO3-的还原,但促进了NO2-的还原和N2O的生成;同时Fe (Ⅱ)只在Soil+Fe (Ⅱ)+NO3-处理中发生氧化.通过定量PCR结果发现,Fe (Ⅱ)的加入提高了亚硝酸盐还原基因nirS和N2O还原基因nosZ的拷贝数;但降低了细胞膜硝酸盐还原基因narG的拷贝数.通过高通量和克隆文库分析发现,Fe (Ⅱ)的加入主要对napA-周质硝酸盐还原微生物群落结构有明显影响,Soil+NO3-处理中优势菌是Dechloromonas,而Soil+Fe (Ⅱ)+NO3-处理中为AzonexusDechloromonasAzospira.Fe (Ⅱ)对厌氧稻田中的反硝化过程及其功能微生物群落具有显著影响,这对了解华南红壤地区稻田体系中的氮元素循环与铁元素转化的关系具有重要意义.  相似文献   

13.
为提升厌氧微生物对含硒(Ⅳ)废水的处理效果,利用ASBR反应器研究Fe3O4对厌氧微生物还原除硒(Ⅳ)的影响,分析了出水硒浓度、硒形态与分布、硒还原酶活性和微生物菌群等变化.结果表明,高碳源浓度时,投加Fe3O4对厌氧微生物去除硒(Ⅳ)没有影响;低碳源浓度时,Fe3O4能显著提高厌氧微生物还原除硒(Ⅳ)的效率和速率,Fe3O4使硒(Ⅳ)去除率由对照组的(97.3±0.5)%提升至(98.2±0.5)%,最大反应速率也提高了3.6倍.同时投加Fe3O4也降低上清液硒(Ⅳ)、硒(0)占比,增加硒(-Ⅱ)占比,促进厌氧微生物还原硒(0)-硒(-Ⅱ)的进程.通过酶活性和微生物菌群结构等分析发现,Fe3O4提高亚硫酸盐还原酶、谷胱甘肽还原酶、周质延胡索酸还原酶和亚硝酸盐还原酶的活性,增加了铁还原科细菌Rhodocyclaceae以及与电...  相似文献   

14.
使用序批式生物反应器驯化耐盐活性污泥,探究提盐速率对污染物去除效果、活性污泥特性和微生物群落结构的影响.结果表明,快速提升盐度至30‰(30 d内提升盐度),COD和NH4+-N去除率均出现明显下降,由最初的85.5%和98.5%,分别降低至72.2%和81.7%;缓慢提升盐度至30%o(90 d内提升盐度),COD和...  相似文献   

15.
通过序批式反应器(SBR)的连续运行,研究了污水不同起始pH值对增强生物除磷的影响(SBR1:pH=6.8;SBR2:pH=7.6).结果表明,在厌氧阶段,SBR2释磷量高于SBR1;在好氧阶段,SBR2降解的聚羟基烷酸(PHA)量低于SBR1,并且糖原合成量/PHA降解量的比例要远远低于SBR1.但是,SBR2反而比SBR1吸收更多的磷.进一步的研究表明,由于SBR2比SBR1合成的糖原少,因此其低PHA降解量并没有导致低吸磷量.推测SBR2中的聚磷菌(PAO)量高于SBR1,从而导致SBR2有着更高的吸磷量以及PHA利用率.在好氧末,SBR2中的可溶解性正磷酸盐(SOP)浓度远远低于SBR1,SBR2的除磷效果达到93.67%,但SBR1仅为65.06%.因此,通过控制污水起始pH值的方法可以达到显著提高增强生物除磷效果的目的,比控制整个污水生物处理过程pH的方法要方便.  相似文献   

16.
研究了投加生物催化剂维生素B12(VB12)对厌氧活性污泥还原降解8:2氟调聚醇(8:2FTOH)的影响.结果表明,投加VB12能够改变厌氧活性污泥还原降解8:2FTOH的动力学特性并增加其最终去除率,但投加量存在上下限:当VB12投加量≤1mg/L时,8:2FTOH最终去除量无显著增加;当VB12投加量≥5mg/L时,8:2FTOH最终去除量也不再持续增加.投加所有剂量的VB12均可显著增加8:2FTOH的最终脱氟率.投加VB12对厌氧活性污泥还原降解8:2FTOH去除率和脱氟率的影响并不一致.此外,投加较高浓度的VB12可以抑制厌氧污泥还原降解8:2FTOH过程中多氟代化合物等中间降解产物的积累,提高全氟代化合物等终态降解产物的产率,同时有利于增加8:2FTOH的矿化脱氟率,但却导致了更低的总物质的量回收率.  相似文献   

17.
研究了投加生物催化剂维生素B12(VB12)对厌氧活性污泥还原降解8:2氟调聚醇(8:2FTOH)的影响.结果表明,投加VB12能够改变厌氧活性污泥还原降解8:2FTOH的动力学特性并增加其最终去除率,但投加量存在上下限:当VB12投加量≤1mg/L时,8:2FTOH最终去除量无显著增加;当VB12投加量≥5mg/L时,8:2FTOH最终去除量也不再持续增加.投加所有剂量的VB12均可显著增加8:2FTOH的最终脱氟率.投加VB12对厌氧活性污泥还原降解8:2FTOH去除率和脱氟率的影响并不一致.此外,投加较高浓度的VB12可以抑制厌氧污泥还原降解8:2FTOH过程中多氟代化合物等中间降解产物的积累,提高全氟代化合物等终态降解产物的产率,同时有利于增加8:2FTOH的矿化脱氟率,但却导致了更低的总物质的量回收率.  相似文献   

18.
为寻求经济、有效的同步脱氮除硫工艺,采用HABR(复合式厌氧折流板反应器),接种厌氧氨氧化活性污泥,以人工模拟废水为研究对象,在进水p H为8.0、温度为(32±1)℃、HRT为6.5 h的条件下,调整进水S2-/NO3--N〔n(S2-)∶n(NO3--N)〕分别为2.0∶5、3.5∶5、5.0∶5、6.5∶5,研究其对硫自养反硝化和厌氧氨氧化耦合工艺启动的影响,试验连续进行了54 d.结果表明:当S2-/NO3--N1时,S2-的供应量相对不足,导致硫自养反硝化生成的NO2--N量不足,进而影响后续厌氧氨氧化效果,NH4+-N去除率较低,平均值为53.5%,同时剩余NO3--N继续氧化硫自养反硝化生成的S0,致使出水中ρ(SO42-)增大;当S2-/NO3--N=1时,S2-供应量充足,硫自养反硝化生成NO2--N量最大,厌氧氨氧化效果最好,NH4+-N去除率最高,平均值为65.1%;当S2-/NO3--N1时,S2-过量,S2-去除率下降.试验通过控制S2-/NO3--N,在HABR内成功实现了硫自养反硝化和厌氧氨氧化耦合工艺启动,NH4+-N、S2-、NO3--N最大去除率分别为74.3%、99.0%、99.5%,S2-/NO3--N=1为最佳比例.  相似文献   

19.
李浩  闫玉洁  谢慧君  贾文林  胡振  张建 《环境科学》2015,36(4):1392-1398
采用SBR反应器,研究了不同浓度的Fe3+对同步硝化反硝化(simultaneous nitrification denitrification,SND)过程中氮元素迁移转化去除和N2O释放的影响.结果表明,在同步硝化反硝化过程中,系统中Fe3+浓度为20 mg·L-1时可以提高系统对氮的去除率,而60 mg·L-1的Fe3+则会对其产生抑制效果.并且,高浓度的Fe3+会刺激SND过程中N2O的释放,N2O转化率也有所提高.这主要是因为:1高浓度的Fe3+会导致污泥脱氢酶活性降低,使得NO-2在好氧阶段大量累积;2高浓度的Fe3+减少了SND过程前置厌氧阶段胞内聚合物(polyhydroxybutyrate,PHB)的含量,使得后续反硝化过程碳源减少.Fe3+对SND过程中总磷的去除有促进作用,并且Fe3+浓度越高,总磷去除率越高,这主要是因为Fe3+的存在使系统中发生了化学除磷作用.  相似文献   

20.
为提高累托石/污泥生物炭复合材料的吸附特性,在通过混合热解法制备的累托石/污泥生物炭复合材料的基础上,利用氧化还原反应制备得到MnO_2改性的累托石/污泥生物炭复合材料,对改性前后的复合材料进行了表征和吸附特性研究。结果表明:MnO_2改性的累托石/污泥生物炭复合材料的比表面积以及微孔和介孔的数量远高于未改性的复合材料,改性复合材料中的MnO_2是无定形的且材料表面含有丰富的含氧官能团;改性后的复合材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附量远高于未改性的复合材料,其吸附过程受pH值的影响较大;该改性复合材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附动力学和等温线分别符合Elovich模型和Langmuir等温线方程,其吸附热力学分析结果表明该改性复合材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附过程是自发的吸热过程,且混乱度增加。可见,MnO_2改性的累托石/污泥生物炭复合材料是一种具有潜力的重金属吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号