首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
以京津冀2020年318个地面监测站点的PM2.5数据为估算因子,构建了时空线性混合效应模型(STLME)和时空嵌套线性混合效应模型(STNLME),为AOD数据的补值研究提供了一种新方法.结果表明:在有AOD-PM2.5匹配数据的日期,上述两个模型估算精度相近,交叉验证后决定系数R2分别为0.868和0.874,均方根误差RMSE分别为0.112和0.109;在无AOD-PM2.5匹配数据的日期,嵌套模型估算精度明显高于非嵌套模型,交叉验证后决定系数R2分别为0.63和0.26.经过模型补值后,研究区监测站点所在网格AOD数据空间维有效比率从原始数据的44.35%提高到99.35%,时间维有效比率从87.94%提高到100%;同时,每个站点的年均AOD值都有明显提高,弥补了高PM2.5浓度条件下缺失的AOD数据,可以减少空气污染和健康研究中暴露评估的偏差.  相似文献   

2.
基于成都市2017年10~12月AURORA-3000积分浊度计、AE-31黑碳仪和GRIMM180环境颗粒物监测仪的地面逐时观测资料,以及该时段同时次的环境气象监测数据(大气能见度、相对湿度RH和NO2质量浓度),通过Mie散射理论与免疫进化算法反演气溶胶粒径吸湿增长因子Gf(RH),并利用光学综合法测量气溶胶散射吸湿增长因子f(RH),探究了Gf(RH)与f(RH)之间的关系.结果表明:当RH<85%,Gf(RH)和f(RH)随RH的增加均表现为平缓式增长;当RH>85%,Gf(RH)和f(RH)随RH的增加则均呈现出爆发式增长.Sigmoid函数f(RH)=17.34/(1+e-2.43·[Gf(RH)-2.15])较好地拟合了f(RH)随Gf(RH)的变化形态,其f(RH)拟合值与测量值之间的决定系数(R2)和平均相对误差(MRE)分别为0.97和4.01%.利用sigmoid函数计算Gf(RH),模拟了观测时段内一次灰霾演化过程中气溶胶的散射系数bsp(RH)和吸收系数bap,二者的模拟值与测量值基本吻合,对应的R2分别为0.99和0.98,MRE分别为2.94%和5.24%.  相似文献   

3.
基于成都市2017年10~12月AURORA-3000积分浊度计、AE-31黑碳仪和GRIMM180环境颗粒物监测仪的地面逐时观测资料,以及该时段同时次的环境气象监测数据(大气能见度、相对湿度RH和NO2质量浓度),通过Mie散射理论与免疫进化算法反演气溶胶粒径吸湿增长因子Gf(RH),并利用光学综合法测量气溶胶散射吸湿增长因子f(RH),探究了Gf(RH)与f(RH)之间的关系.结果表明:当RH<85%,Gf(RH)和f(RH)随RH的增加均表现为平缓式增长;当RH>85%,Gf(RH)和f(RH)随RH的增加则均呈现出爆发式增长.Sigmoid函数f(RH)=17.34/(1+e-2.43·[Gf(RH)-2.15])较好地拟合了f(RH)随Gf(RH)的变化形态,其f(RH)拟合值与测量值之间的决定系数(R2)和平均相对误差(MRE)分别为0.97和4.01%.利用sigmoid函数计算Gf(RH),模拟了观测时段内一次灰霾演化过程中气溶胶的散射系数bsp(RH)和吸收系数bap,二者的模拟值与测量值基本吻合,对应的R2分别为0.99和0.98,MRE分别为2.94%和5.24%.  相似文献   

4.
蒋昕桐  刘东  钟朴  段洪涛 《中国环境科学》2022,42(12):5824-5835
基于2021年夏秋两季西部干旱区博斯腾湖表层50个采样点位实测数据,通过对DOC特征的统计学分析、内外源因素影响的时空差异以及电导率相关性验证,将博斯腾湖划分为河口和非河口区域.然后以CDOM特征波长吸收系数a250a365为自变量,以DOC浓度(cDOC)为因变量,分别构建了基于CDOM的河口和非河口水域DOC浓度估算模型.结果表明:河流与湖泊进行水体交换的同时,会将大量陆源DOC输送到博斯腾湖中,使得河口区域DOC浓度明显高于非河口区域(t-tests,P<0.01),河口区域的DOC浓度(cDOC)约是非河口区域的2.2~2.3倍,且在河口区域cDOC与电导率呈现显著相关关系(夏季:R2=0.81,P<0.01;秋季:R2=0.84,P<0.01).本文构建拟合模型(cDOC=α+β·α250+γ·α365),并通过交叉验证的方法来检验模型精度.将夏季和秋季同区域数据统一建模,河口和非河口区域CDOM与DOC均存在较好的相关关系,且模型精度较高(河口区域:R2=0.60,RMSE=8.56%;非河口区域:R2=0.66,RMSE=8.77%).本文所建立的模型可以在不增加环境因子变量的前提下提高精度,有利于实现卫星遥感反演.同时,本研究揭示了河流输入对博斯腾湖DOC分布和估算的时空影响,提出可利用CDOM估算DOC浓度,但需根据水文特征和cDOC等因素区分河口和非河口区域.本研究对实现新疆水资源合理开发、有效保护以及综合治理提供科学依据,对我国西部干旱区湖泊DOC遥感动态监测具有重要意义.  相似文献   

5.
基于静止卫星高分四号(GF-4)遥感数据,利用6SV辐射传输模型与暗目标算法进行高空间分辨率气溶胶光学厚度(AOD)遥感反演;在此基础上,结合地面监测站大气细颗粒物(PM2.5)浓度、气象资料等数据,采用物理订正方法及线性混合效应模型,实现长三角城市群区域大尺度空间连续的PM2.5浓度遥感反演;最后利用十折交叉验证法对反演精度进行验证.结果表明:GF-4反演的AOD结果分辨率较高,空间连续性好,与AERONET地基监测相关性R达到0.82;利用GF-4 AOD的PM2.5估算模型精度较高,模型估算PM2.5浓度与地面实测数据拟合度R2为0.74;在分春夏秋冬4个季节建模情景下,交叉验证R2依次为0.67,0.59,0.63和0.72,平均绝对误差MAE为10.40,7.42,10.10,13.34μg/m3,表明GF-4卫星适用于区域PM2.5浓度监测.  相似文献   

6.
基于成都市2017年10~12月逐时的“干”气溶胶散射系数和吸收系数观测数据,结合该时段同时次的能见度(V)、相对湿度(RH)以及二氧化氮(NO2)监测资料,利用“光学综合法”计算气溶胶散射吸湿增长因子,并探究了气溶胶散射吸湿增长因子单变量f(RH)模型的适用性及其改进方案.结果表明:幂函数、二次多项式、幂指函数形式的f(RH)模型在低RH条件下(RH<85%)均能很好地模拟气溶胶散射吸湿增长因子随RH的变化特征,但在高RH条件下(RH>85%)的模拟值会出现较大的偏差.黑碳质量浓度(CBC)是影响气溶胶散射吸湿增长因子的另一关键变量,二者之间满足非线性关系.以RH和CBC为自变量构建了气溶胶散射吸湿增长因子双变量f(RH,CBC)模型,模型计算值和实测值之间的决定系数R2为0.763,平均相对误差MRE为14.28%.双变量模型f(RH,CBC)的应用显著改善了气溶胶散射消光系数的模拟效果.  相似文献   

7.
提出一种基于深度学习方法的地面PM2.5浓度时空估算模型(PM2.5-DNN),该模型基于葵花-8卫星反演的AOD数据,结合PM2.5监测站和气象站点观测数据对北京市地面PM2.5浓度进行了逐时的高精度模拟,同时将PM2.5-DNN模型的模拟性能与当前的主流方法进行了对比研究.结果表明,使用PM2.5-DNN模型估算的北京地区1km分辨率每小时地面PM2.5浓度与地表监测站观测数据对比的一致性较好,模型估算精度可达到R2=0.88,性能优于当前的主流方法.本文所提出的方法适用于区域尺度PM2.5浓度时空分布细粒度建模与估算,采用端到端的训练方式构建模型,为精细的PM2.5浓度估算提供了一个简便而有效的方法模型.  相似文献   

8.
采集内蒙古河套灌区盐碱土壤(电导率EC为0.27mS/cm),利用NaCl调节土壤电导率为(0,10,20,40,80mS/cm),基于稳定碳同位素分析不同电导率土壤添加定量δ13C-CO2后,土壤CO2吸收量以及土壤难溶性无机碳含量(SIC)-δ13C值.结果表明,盐碱土壤能够吸收CO2,随土壤电导率(EC)升高,土壤CO2累积吸收量增加, S5(EC=80mS/cm) CO2累积吸收量比S1(0.27mS/cm)高1.6640mg.土壤SIC含量(R2=0.7080,P<0.05)和土壤可溶性无机碳含量(DIC)(R2=0.6096,P<0.05)与土壤EC显著负相关关系.盐碱土壤吸收CO2部分固存于土壤无机碳中,外源添加δ13C-CO2,盐碱土壤SIC-δ13C值(-5.299‰ ~ -0.8341‰)显著增加.EC为20mS/cm土壤固相保存δ13C-CO2总量最高1.276mg,固存δ13C-CO2总量占土壤吸收13CO2总量比例30.28%最高;EC为80mS/cm固碳量最低为0.2749mg,固存δ13C-CO2总量占土壤吸收13CO2总量比例5.579%.  相似文献   

9.
NH3针对传统近地面NO2浓度空间模拟过程中NO2浓度与其影响要素之间关系的复杂非线性机制解释不充分的缺陷,本研究基于随机森林(RF)算法、融合多源地理要素开展了近地面NO2浓度空间分布模拟研究.以卫星OMI对流层NO2柱浓度数据和多源地理要素(道路交通、气象因子、土地利用/覆盖、地形高程、人口数量)为输入变量,近地面NO2浓度为输出变量,利用RF算法构建近地面NO2浓度反演模型.通过对比地面观测数据与传统土地利用回归模型(LUR)检验RF模型的有效性,基于所构建的最优RF模型在不同时间尺度下模拟分析中国大陆地区近地面NO2浓度空间分布特征.结果表明:(1)集成多源地理要素的RF回归模型精度高,月均模型整体拟合度R2 0.85,RMSE 6.08μg/m3,交叉验证的R2 0.84,RMSE 6.33μg/m3,显著高于LUR模型(拟合R2 0.53,RMSE 10.48μg/m3,交叉验证的R2 0.53,RMSE 10.49μg/m3); (2)地面NO2浓度与预测变量呈现显著的复杂非线性与时间尺度依赖关系,卫星OMI柱浓度对模型影响程度最大,重要性指标IncMSE介于97.40%~116.54%,多源地理特征变量对RF模型同样具有不可忽视的贡献力(IncMSE在23.34%~47.53%之间);(3)中国大陆地区NO2污染程度较高,年均模拟浓度为24.67μg/m3,存在明显季节性空间差异,NO2浓度冬季(31.85μg/m3) > 秋季(24.86μg/m3) > 春季(23.24μg/m3) > 夏季(18.75μg/m3),呈现以华北平原为高值中心、向外围逐渐减轻的空间分布格局.较已有研究揭示对流层NO2柱浓度宏观分布特征,本研究对近地面NO2污染特征的研究成果对于合理制定污染防控策略、降低居民暴露健康损害具有指导意义.  相似文献   

10.
采用优化设计的动态通量箱,对不同盐分(NaCl和Na2SO4)和盐度(0~5%)的盐渍化土壤土-气界面的汞交换通量进行动态监测,研究盐渍化对污灌区土壤汞和大气释放的影响.结果表明:(1)两种盐分类型对土壤Hg释放的影响呈相反趋势.与未发生盐渍化的对照土壤相比,随着NaCl盐度梯度的上升,土壤Hg释放通量呈现上升趋势,5%盐度处理下,Hg通量均值与对照相比提高了48.94%;而随着Na2SO4盐度梯度的上升,土壤Hg释放通量呈现下降趋势,5%盐度处理下,Hg通量均值与对照相比降低了20.62%.(2)土壤盐分含量与土壤汞释放通量均值之间呈线性关系.对于NaCl,含量x(g/kg)与汞通量y [ng/(m2·h)]之间的模型为y=0.8258x+86.709(R2=0.9734),对于Na2SO4,模型为y=-0.3354x+85.997(R2=0.9581).从研究结果来看,高浓度的NaCl环境对土壤汞释放通量有显著影响,土壤的盐渍化趋势会使汞释放及作物吸收风险更趋严重.  相似文献   

11.
基于Landsat遥感影像热红外波段数据,利用大气校正法反演地表水热因子中的地表温度值,基于Landsat遥感影像可见光波段,从生物地球物理效应角度提取下垫面地表扰动类型和4个生物物理参数(光合植被覆盖度,Fractional Cover of Photosynthetic VegetationfPV;土壤湿度监测指数...  相似文献   

12.
基于GIMMS NDVI3g(the third generation of Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index)数据,辅以趋势分析、Mann-Kendall检验、Hurst指数等方法,识别了1982—2013年及1982—1999、2000—2013年黄土高原植被覆盖时空演变特征,并探讨其驱动因素。研究发现:1)1982—2013年及1982—1999、2000—2013年期间黄土高原生长季NDVI分别以0.019/10 a(P<0.01)、0.016/10 a(P<0.05)和0.057/10 a(P<0.001)的速率增加;2)除1999年以前林地外,所有植被类型的生长季NDVI均呈现显著的增加趋势,2000—2013年尤为明显;3)黄土高原生长季NDVI呈现由东南向西北递减的趋势,1982—2013年及1982—1999、2000—2013年NDVI显著上升的面积分别占74.94%、24.26%和53.34%,主要集中在黄土高原的北部和中部地区;4)研究区未来生长季NDVI呈持续性和反持续的比重分别为33.32%和66.68%,其中持续改善和由改善变为退化的面积分别占31.08%和61.88%;5)2000年以后降水增多与生长季NDVI上升相对应,大规模的生态工程建设对2000—2013年生长季NDVI增加有重要影响。  相似文献   

13.
天山北坡典型退化草地植被覆盖度监测模型构建与评价   总被引:3,自引:2,他引:3  
草地退化是当今世界面临的一个极为严峻的生态问题。植被覆盖度作为草地退化监测的重要指标之一,在草地退化、荒漠化治理方面起着重要的作用。为了构建适合于天山北坡典型草地植被覆盖度监测模型,便于对草地及时、快速的监测分析,研究利用新疆阜康市2008年9月Landsat TM遥感影像数据和相应的实测数据,分别探讨5种植被指数(NDVI、RVI、GNDVI、SAVI和MSAVI)与植被覆盖度的线性和非线性(二次多项式、指数、对数以及幂函数)关系,以便获得最佳监测草地状况的植被指数和模型。研究结果表明,MSAVI和GNDVI与植被覆盖度的相关性最好(P<0.01),而NDVI和RVI较差;通过5种植被指数和植被覆盖度进行回归分析,MSAVI和GNDVI与植被覆盖度分别建立模型最佳,即:y=138.45x-1.248 2(R2=0.502 7,P<0.01)和y=2 596.66x2-561.54x+38.488(R2=0.605 3,P<0.01),精度达到90%以上。该研究结果说明不同的植被指数适用的条件不同,为今后利用3S技术深入研究荒漠退化草地植被状况的快速监测和科学管理提供支持。  相似文献   

14.
为揭示黄石市二氧化氮(NO2)的健康效应和人群暴露风险特征,收集2015~2020年黄石市NO2浓度、非意外死亡、呼吸系统和循环系统疾病每日死亡人数、内科疾病每日住院人数以及气象要素等资料,探究了黄石市NO2时空变化,采用时间序列的半参数广义相加模型(GAM)定量评价NO2对黄石市死亡病例和内科住院病例人数的影响,并对居民的暴露风险(R*)进行评估.结果表明:黄石市NO2的浓度年内变化呈“U”型,春冬污染较严重,人群密集和工业区NO2浓度稍高.在最佳滞后时间下,NO2浓度每增加10μg/m3,非意外死亡、呼吸系统和循环系统病例的死亡人数在lag01、lag3、lag1时达到最大,增加百分比(ER)值分别为1.93%(95%CI:-2.10,6.14),2.13%(95%CI:-6.56,11.62),4.82%(95%CI:-0.22,10.02),内科疾病每日住院人数在lag05时达到最大,增加百分比(IP)值...  相似文献   

15.
长江上游植被覆盖的时空分异季节变化及其驱动因子研究   总被引:3,自引:0,他引:3  
以GIMMS/NDVl为基础,结合气候与人类活动数据,研究了1982~2003年间长江上游植被覆盖季节变化的空间分布.结果表明,近22年来,长江上游春季、夏季植被覆盖呈增加趋势,以春季最显著;秋季、冬季植被覆盖呈降低趋势,以秋季降低最显著.春季、夏季降雨与气温的同步增加,致使植被覆盖增加;秋季降雨减少,以及气温的增加导致植被覆盖降低;另外,作物播种面积的增加是春季、夏季植被覆盖增加,秋季、冬季植被覆盖减少的重要原因.春季→夏季→秋季→冬季NDVI增加的区域在窄问上大致呈现低纬度向高纬度转移的趋势.春季、夏季所有植被类型的NDVI均有增加趋势;而秋季所有植被类型的NDVI均降低;冬季植被除针叶林的NDVI略有增长外,其余植被类型的NDVI均降低.  相似文献   

16.
2000年来中国生态状况时空变化格局   总被引:2,自引:0,他引:2  
21世纪以来,我国在经济快速发展的同时高度重视生态环境保护,一系列生态修复工程和空间管控措施使生态状况发生了巨大变化;然而目前对于全国生态状况宏观格局的认识仍十分有限。借助 Google Earth Engine(GEE)遥感云计算平台,采用主成分分析方法和MODIS数据构建的绿度NDVI、热度LST、湿度WET和干度NDSI四个指标,生成长时间序列的遥感生态指数RSEI数据集,完整刻画了中国2000年来生态状况的时空连续变化格局。研究发现:在空间格局上,东南沿海地区生态状况优于西北地区;变化趋势上,全国生态状况除上海、西藏和澳门之外均显著改善,RSEI增长最多的三个省份为山西、陕西和河北。进一步采用遥感云计算定量评价了2000年来生态状况变化的宏观格局,以期为国土空间管控和生态保护提供科学支持。  相似文献   

17.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号