首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The availability of different forms of nitrogen in coastal and estuarine waters may be important in determining the abundance and productivity of different phytoplankton species. Although urea has been shown to contribute as much as 50% of the nitrogen for phytoplankton nutrition, relatively little is known of the activity and expression of urease in phytoplankton. Using an in vitro enzyme assay, urease activities were examined in laboratory cultures of three species: Aureococcus anophagefferens Hargraves et Sieburth, Prorocentrum minimum (Pavillard) Schiller, and Thalassiosira weissflogii (Grunow) Fryxell et Hasle. Cultures of P. minimum and T. weissflogii were grown on three nitrogen sources (NO3m, NH4+, and urea), while A. anophagefferens was grown only on NO3m and urea. Urease was found to be constitutive in all cultures, but activity varied with growth rate and assay temperature for the different cultures. For A. anophagefferens, urease activity varied positively with growth rate regardless of the N source, while for P. minimum, urease activity varied positively with growth rate only for cultures grown on urea and NH4+. In contrast, for T. weissflogii, activity did not vary with growth rate for any of the N sources. For all species, urease activity increased with assay temperature, but with different apparent temperature optima. For A. anophagefferens, in vitro activity increased from near 0-30°C, and remained stable to 50°C, while for P. minimum, increased in vitro activity was noted from near 0-20°C, but constant activity was observed between 20°C and 50°C. For T. weissfloggii, while activity also increased from 0°C to 20°C, subsequent decreases were noted when temperature was elevated above 20°C. Urease activity had a half-saturation constant of 120-165 wg atom N lу in all three species. On both an hourly and daily basis, urease activity in A. anophagefferens exceeded nitrogen demand for growth. In P. minimum, urease activity on an hourly basis matched the nitrogen demand, but was less than the demand on a daily basis. For T. weissflogii, urease activity was always less than the nitrogen demand. These patterns in urease activity in three different species demonstrate that while apparently constitutive, the regulation of activity was substantially different in the diatom. These differences in the physiological regulation of urease activity, as well as other enzymes, may play a role in their ecological success in different environments.  相似文献   

2.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
Life-history features of the sympatric amphipods Themisto pacifica and T. japonica in the western North Pacific were analyzed based on seasonal field samples collected from July 1996 through July 1998, and data from laboratory rearing experiments. T. pacfica occurred throughout the year, with populations peaking from spring to summer. In contrast, T. japonica were rare from autumn to early winter, but became abundant in late winter to spring. Mature T. pacifica females and juveniles occurred together throughout the year, indicating year-round reproduction. Mature T. japonica females were observed only in spring, and juveniles occurred irregularly in small numbers, suggesting limited, early-spring reproduction in this study area. Size composition analysis of T. pacifica identified a total of eight cohorts over the 2 years of the study. Due to the smaller sample size and rarity of mature females (>9.6 mm) and males (>7.1 mm), cohort analyses of T. japonica were not comparable. Laboratory rearing of specimens at 2°C, 5°C, 8°C and 12°C revealed that a linear equation best expressed body length growth by T. pacifica, while a logistic equation best expressed body length growth by T. japoncia. Combining these laboratory-derived growth patterns with maturity sizes of wild specimens, the minimum and maximum generation times of females at a temperature range of 2–12°C were computed as 32 days (12°C) and 224 days (2°C), respectively, for T. pacifica, and 66 days (12°C) and 358 days (2°C), respectively, for T. japonica. The numbers of eggs or juveniles in females marsupia increased with female body length and ranged from 23 to 64 for T. pacifica and from 152 to 601 for T. japonica. Taking into account the number of mature female instars, lifetime fecundities were estimated as 342 eggs for T. pacifica and 1195 eggs for T. japonica. Possible mechanisms for the coexistence of these two amphipods in the Oyashio region are also discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

4.
The threatened seagrass Halophila johnsonii Eiseman coexists subtidally with H. decipiens Ostenfeld in southeastern Florida, but only H. johnsonii also occurs intertidally. Pulse amplitude modulated fluorometry and fiber-optic spectrometry were used to investigate the photobiology of two populations of H. johnsonii and H. decipiens in an attempt to explain these distribution patterns. Maximum photosynthetic quantum yields (Fv/Fm) were measured in situ as a function of depth distribution within, and between, these two species at two sites (Jupiter Sound, 26°57′N; 80°04′W, and northern Biscayne Bay, 25°55′N; 80°07′W) along the east coast of Florida, USA, during 6–10 March 2001. Reciprocal transplants at the northern site were used to evaluate the plasticity of photosynthetic patterns and pigment absorption spectra and to gain insights into the mechanisms responsible for variations in the observed depth-distribution patterns. Subtidal-population Fv/Fm values were generally higher for H. johnsonii than for H. decipiens, at both sites. At the northern site, intertidal H. johnsonii had significantly lower Fv/Fm (0.494±0.138) than both subtidal H. johnsonii (0.696±0.045) and subtidal H. decipiens (0.668±0.048). In contrast, at the southern site intertidal H. johnsonii had the highest Fv/Fm (0.663±0.047) and were the largest plants. Fv/Fm values of subtidal plants of both species decreased when they were transplanted into shallow, intertidal beds. Correspondingly, Fv/Fm increased for intertidal H. johnsonii transplanted into the subtidal, 2 m deep beds. Rapid light curves indicated that H. decipiens had lower maximum relative electron transport rates (RETRmax) than did H. johnsonii. In addition, the onset of photoinhibition occurred at lower irradiances for H. decipiens (537–820 μmol photons m−2 s−1) compared to H. johnsonii (1141–2670 μmol photons m−2 s−1). RETRmax values decreased for intertidal H. johnsonii transplanted into subtidal beds, but they increased for both species when transplanted from subtidal to intertidal beds. Absorption spectra for the acetone-soluble leaf pigments of intertidal H. johnsonii exhibited a dominant peak near 345 nm; this UV peak was 30% lower for subtidal plants. Pigment absorption spectra for H. decipiens lacked the 345 nm peak and absorbances, normalized to leaf pairs, were lower across the spectrum. Our results indicate that photosynthetic tolerance to higher irradiances and presence of UV-absorbing pigments (UVP) in H. johnsonii may allow this species to exploit the shallowest waters without competition from the closely related, but UVP-lacking H. decipiens.  相似文献   

5.
Allozyme variation of 10 populations of Linckia laevigata at 8 polymorphic loci and 13 populations of Tridacna crocea at 6 polymorphic loci were analyzed to compare genetic variability and genetic affinities among reefs in Palawan, Philippines. Two to five populations were sampled from each of four regions: the shelf reefs in (1) northern Palawan and (2) southern Palawan and the offshore reefs in (3) the Kalayaan island group (KIG) in the South China Sea and (4) the Tubbataha shoals in the Sulu Sea. Heterozygosity was highest in populations of L. laevigata from the south shelf of Palawan and populations of T. crocea from the Tubbataha shoals of the Sulu Sea. The lowest heterozygosity estimates were from the reefs of the KIG in the South China Sea, for both species. Overall F ST values for both species were significant, with an estimated average number of effective migrants per generation (N EM) of 4.85 (~5 individuals) for L. laevigata and 3.54 (~4 individuals) for T. crocea. Within-region comparisons showed NEM ranging from 6.29 to 92.34 for L. laevigata and from 3.40 to 6.30 for T. crocea. The higher gene flow among L. laevigata populations relative to T. crocea is consistent with the greater dispersal potential of the former species. Finer scale genetic structuring was evident in T. crocea populations. For both species, the Tubbataha reefs in the Sulu Sea have higher genetic affinity with the populations from the southern shelf of Palawan, while the reefs in the KIG had higher affinity with the northern Palawan shelf reefs. The north and south shelf populations have the least genetic affinity. Genetic patchiness among reefs within regions suggests the importance of small-scale physical factors that affect recruitment success in structuring populations in small island and shoal reef systems in Palawan.  相似文献   

6.
Changes in the protein, lipid, glycogen, cholesterol and energy contents, total amino acid and fatty acid profiles of Octopus vulgaris and O. defilippi tissues (gonad, digestive gland and muscle) during sexual maturation (spermatogenesis and oogenesis) were investigated. Both species showed an increase of amino acids and protein content in the gonad throughout sexual maturation (namely in oogenesis), but allocation of these nitrogen compounds from the digestive gland and muscle was not evident. The major essential amino acids in the three tissues were leucine, lysine and arginine. The major non-essential amino acids were glutamic acid, aspartic acid and alanine. With respect to carbon compounds, a significant increasing trend (P<0.05) in the lipid and fatty acid contents in the three tissues was observed, and, consequently, there was also little evidence of accumulated lipid storage reserves being used for egg production. It seems that for egg production both Octopus species use energy directly from food, rather than from stored products. This direct acquisition model contrasts with the previous model for Octopus vulgaris proposed by ODor and Wells (1978: J Exp Biol 77:15–31). Most of saturated fatty acid content of the three tissues was presented as 16:0 and 18:0, monounsaturated fatty acid content as 18:1 and 20:1 and polyunsaturated fatty acid content as arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3). Though cholesterol is an important precursor of steroid hormones, this sterol content exhibited variations that do not seem to be related with the maturation process. Moreover, significant differences (P<0.05) were obtained between genders, suggesting that perhaps there is a greater physiological demand for cholesterol during spermatogenesis than oogenesis. If the component sterols of octopus are of a dietary origin, considerable variation in the cholesterol content between species might be expected on the basis of the sterol composition of their prey. The glycogen reserves increased significantly in the gonad and decreased significantly (P<0.05) in the digestive gland and muscle of O. vulgaris (these trends were not evident in O. defilippi). Glycogen may play an important role in the maturation process and embryogenesis of these organisms, because carbohydrates are precursors of metabolic intermediates in the production of energy. It was evident that sexual maturation had a significant effect upon the gonad energy content, but the non-significant energy variation (P>0.05) in the digestive gland and muscle revealed no evidence that storage reserves are transferred from tissue to tissue. The biochemical composition of digestive gland and muscle may not be influenced by sexual maturation, but rather by other biotic factors, such as feeding activity, food availability, spawning and brooding.Communicated by S.A. Poulet, Roscoff  相似文献   

7.
The genetic population structures of Atlantic northern bluefin tuna ( Thunnus thynnus thynnus) and albacore ( T. alalunga) were examined using allozyme analysis. A total of 822 Atlantic northern bluefin tuna from 18 different samples (16 Mediterranean, 1 East Atlantic, 1 West Atlantic) and 188 albacore from 5 samples (4 Mediterranean, 1 East Atlantic) were surveyed for genetic variation in 37 loci. Polymorphism and heterozygosity reveal a moderate level of genetic variability, with only two highly polymorphic loci in both Atlantic northern bluefin tuna ( FH* and SOD- 1*) and albacore ( GPI- 3* and XDH*). The level of population differentiation found for Atlantic northern bluefin tuna and albacore fits the pattern that has generally been observed in tunas, with genetic differences on a broad rather than a more local scale. For Atlantic northern bluefin tuna, no spatial or temporal genetic heterogeneity was observed within the Mediterranean Sea or between the East Atlantic and Mediterranean, indicating the existence of a single genetic grouping on the eastern side of the Atlantic Ocean. Very limited genetic differentiation was found between West Atlantic and East Atlantic/Mediterranean northern bluefin tuna, mainly due to an inversion of SOD- 1* allele frequencies. Regarding albacore, no genetic heterogeneity was observed within the Mediterranean Sea or between Mediterranean and Azores samples, suggesting the existence of a single gene pool in this area.  相似文献   

8.
The predator avoidance behaviours of two littoral mysid species, Neomysis integer (Leach) and Praunus flexuosus (Müller), were studied experimentally. In ingestion experiments, mysids responded to a combination of chemical and visual signals of perch (Perca fluviatilis), but not to each stimulus alone. In the presence of the combined visual and chemical predator signal the swimming activity and choice of habitat (open vs. artificial vegetation, the Charophyte Chara tomentosa or the brown alga Fucus vesiculosus) were also influenced. The two mysid species behaved differently when perceiving predation risk: N. integer reduced swimming activity, whereas P. flexuosus increased their use of the vegetation. The different antipredator strategies of the two mysid species reflect their different lifestyles, N. integer being a swarm-forming species and P. flexuosus living in association with aquatic macrophyte vegetation.Communicated by L. Hagerman, Helsingør  相似文献   

9.
Adult Acartia congeners, A. bifilosa, A. clausi, A. discaudata and A. tonsa, have distinct seasonal and spatial distribution patterns in Southampton Water (UK), reflecting patterns of temperature and salinity, respectively. The effect of these factors on other life stages, hatch success and naupliar survival was investigated by exposing the congeners to a range of salinity (15.5–33.3) and of temperature (5–20°C). A. clausi is known to prefer more saline waters, and showed highest hatch success at 33.3 salinity. A. tonsa is most tolerant to dilution, and at 15.5 salinity it had the highest hatch success of all the congeners. Hatch success in both A. bifilosa and A. discaudata was similar over the range of salinities investigated, confirming that they are intermediate species in terms of spatial distribution. The nauplii of all species survived well at the higher salinities and best at 33.3, which allows for differential transport of the poorly swimming nauplii to the mouth of the estuary until size and swimming ability increase, after which they can then return to regions of preferred salinity. The summer species, A. clausi and A. tonsa showed higher hatch success at 20°C, whereas A. discaudata, which is present in the water column all year round, showed no significant temperature-related differences in hatch success. A. bifilosa, which diapauses over summer, showed significantly higher hatch success at 10°C than at 20°C. The physiological relationship between temperature and development time was clear; naupliar survival of all species was highest at 20°C and all congeners reached the first copepodite stage (CI) significantly faster at 20°C. However, no consistent pattern was seen for salinity. It would appear that the adult Acartidae in Southampton Water remain in regions of their preferred salinity and lay eggs there which hatch well. However, because the nauplii are not good swimmers, they are swept towards the mouth of the estuary and into areas of higher salinity, where they remain and develop into more advanced stages before moving back up the estuary to take up their adult distribution pattern.Communicated by J.P. Thorpe, Port Erin  相似文献   

10.
Previous molecular phylogenetic analyses have shown that five tropical lucinid species living in or near Thalassia testudinum seagrass beds are colonized by the same bacterial symbiont species. In addition, a new lucinid species belonging to the genus Anodontia, which inhabits reducing sediment found near seagrass beds and in mangrove swamps, has been included in the present study. Endosymbiosis in Anodontia alba was examined according to symbiont phylogenetic and gill ultrastructural analysis. Phylogenetic analysis showed that partial 16S rDNA sequences of A. alba- and Codakia orbicularis-symbionts were 100% identical at all nucleotide positions determined, suggesting that A. alba also harbors the same symbiont species as C. orbicularis (and, consequently, as C. orbiculata, C. pectinella, Linga pensylvanica and Divaricella quadrisulcata). Based on light and electron microscopy, the cellular organization of the gill filament appeared similar to those already described in other lucinids. The most distinctive feature is the lack of "granule cells" in the lateral zone of A. alba gill filaments. In order to confirm the single-species hypothesis, purified fractions of gill bacterial symbionts obtained from the gills of each of the six tropical lucinids cited above were used to infect aposymbiotic juveniles of C. orbicularis. In each case, aposymbiotic juvenile batches were successfully infected by the gill-endosymbiont fractions, whereas, during the experiments, juveniles from the negative control were still uninfected. These experimental data confirm the phylogenetic data and also demonstrate that chemoautotrophic bacterial endosymbionts from their host cells can colonize aposymbiotic juveniles. The conclusion also follows that intracellular gill-endosymbionts still have the capacity to recognize and colonize new host generations. Lucinids provide a unique model for the study of sulfide-oxidizing symbiosis, even if symbionts remain unculturable.  相似文献   

11.
Monthly skeletal extension rates were measured in colonies of Montastraea annularis and M. faveolata growing at Mahahual and Chinchorro Bank, in the Mexican Caribbean. Temperature, light extinction coefficient (kd), sedimentation rate, dissolved nutrients and wave energy were used as indicators of environmental conditions for coral growth. Zooxanthella density and mitotic index, nitrogen, phosphorous and protein in coral tissue, and living tissue thickness were measured during periods of high-density-band (HDB) and low-density-band (LDB) formation. To test their value as indirect measures of competition between zooxanthellae and host, as well as coral health and performance in both species, these biological parameters were also measured, during the HDB-formation period, in corals collected at La Blanquilla. This reef is located in the Gulf of Mexico, in an area of suboptimal environmental conditions for coral growth. M. faveolata had a significantly higher skeletal extension rate than M. annularis. Corals growing in Mahahual had significantly higher skeletal extension rate than those living in Chinchorro Bank. This is consistent with inshore–offshore gradients in growth rates observed by other authors in the same and other coral species. This is probably due to less favorable environmental conditions for coral growth in near shore Mahahual, where there is high hydraulic energy and high sedimentation rate. Contrary to observations of other authors, skeletal extension rate did not differ significantly between HDB- and LDB-formation periods for both species of Montastraea. Both species produced their HDB between July and September, when the seawater temperatures are seasonally higher in the Mexican Caribbean. Tissue thickness indicated that environmental conditions are more favorable for coral health and performance during the HDB-formation period. Mitotic index data support the idea that zooxanthellae have competitive advantages for carbon over the host during the LDB-formation period. So, corals, during the LDB-formation period, with less favorable environmental conditions for coral performance and at a disadvantage for carbon with zooxanthellae, add new skeleton with little or no opportunity for thickening the existing one. This results in an equally extended skeleton with lower density, and the stretching response of skeletal growth, proposed for M. annularis growing under harsher environmental conditions, also occurs during the LDB-formation period.Communicated by P.W. Sammarco, Chauvin  相似文献   

12.
The copepod Paramacrochiron maximum was found in high numbers (up to 5,675 copepods/medusa) on the oral arms of the scyphozoan Catostylus mosaicus. This association was considered to be commensalism for the following reasons: P. maximum (Lichomolgidae) was abundant on the medusae (approximately 805 copepods/kg of medusae) and very rare in the water column (approximately 5.99×10-4 copepods/kg of water); copepodites and adults of the symbiont were present on the host; the copepods were on the medusae both day and night, at different times (nine occasions between March 1999 and May 2000) and different locations (Botany Bay and Lake Illawarra, NSW, Australia). Over 40 taxa of plankton were found on the oral arms of C. mosaicus (including protists, cnidarians, polychaetes, molluscs, a wide range of holoplanktonic and meroplanktonic crustaceans, chaetognaths and fish eggs). These taxa were abundant in the water column and we concluded that they were prey. Symbiotic amphipods and carangid fishes were found with medusae. We conclude that there is a symbiotic association between P. maximum and C. mosaicus and care should be taken not to confound these copepods with the prey of C. mosaicus. Poecilostomid copepods are well known for consuming mucus and feeding is likely to be a major reason for the association.Communicated by G.F. Humphrey, Sydney  相似文献   

13.
The glutathione S-transferase enzyme system, which belongs in phase II of detoxification, has been studied in developmental stages of the branchiopod Artemia salina. The highest total activity and specific activity towards 1-chloro-2,4-dinitrobenzene was observed 48 h after hatching. The number of isoenzymes present in A. salina varies between three and four, depending on the developmental stage. The two major isoenzymes, with corresponding isoelectric points of 8.5 and 7.2, were present in all developmental stages, but at a varying rate: as the organism grew older, the alkaline isoenzyme was expressed at a higher rate. The kinetic and molecular characteristics of the enzyme were similar to those of other aquatic organisms. With regards to the kinetic characteristics, significant differences were observed between the two major isoenzymes, and, since the rate of their expression changes as the organism grows, the detoxification potential of the organism varies according to developmental stage.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

14.
Urastoma cyprinae is a species infecting the gills of several marine bivalves. Although there is some literature on this turbellarian, its life cycle remains unknown. In our work we have demonstrated that reproduction of U. cyprinae can be completed out of its host. More than 50% of turbellarians isolated from mussels (Mytilus galloprovincialis) secreted and cemented a cocoon to the well bottom during the first 72 h of incubation in seawater (34 salinity) at 14°C. Oviposition started at days 1–18 (average 4.8 days) and occurred in most cases inside the protective cocoon. Each Urastoma laid an average of 2.9 egg capsules (range 1–10) and 3.9 embryos were developed inside each egg capsule (range 1–11). Hatching started at days 20–43 (average 24 days). An average of 12.8 juvenile forms (range 1–64) escaped from the cocoon after hatching. The free-swimming juveniles showed a positive phototactic response and survived about a month after hatching. On the basis of our results, we propose a life cycle for U. cyprinae involving a sexual maturation parasitic period in the bivalve gills and a reproduction period including cocoon secretion, egg laying, and hatching that is entirely completed in the external environment.Communicated by S.A. Poulet, Roscoff  相似文献   

15.
Survival and growth of early post-settlement stages are critical for the development of seaweed populations. Fucoid germlings commonly settle in dense monospecific aggregates, where intraspecific competition and environmental variables (e.g. nutrient concentration and temperature) may affect survival and growth. Using factorial experiments, we determined the effects of settlement density (~10, ~50 and ~250 germlings cm–2), nutrient enrichment (from ~10 to ~40 µM N and from ~0.5 to ~2.5 µM P), and temperature (7°C and 17°C) on Fucus serratus and F. evanescens germlings in laboratory cultures over 3 months. Settlement density, nutrient concentration and temperature interactively affected growth of germlings, and the magnitude of this interaction varied between the two species. This represents the first record of such factorial interactions in Fucus spp. germlings. Intraspecific competition, estimated as the relative reduction in germling growth and survival from low to high densities, increased with decreasing nutrient concentration and increasing temperature in both species. While temperature and nutrient concentration had little effect on germling size distributions, size inequality and skewness generally increased with germling density, indicating that a few large individuals gained dominance and suppressed many smaller ones at high density. Self-thinning increased with settlement density and depended on nutrient concentration and species at high density. At high density, self-thinning increased with decreasing nutrient levels in F. evanescens, but not in F. serratus. At low density, nutrient enrichment increased germling growth in F. evanescens, but not in F. serratus, whereas growth in both species was stimulated by nutrient enrichment at higher densities. These results suggest that germling growth and self-thinning are more sensitive to variation in nutrient concentration in F. evanescens than in F. serratus. The potential implications of our findings for the understanding of eutrophication-related abundance changes in both species in southern Norway are discussed.Communicated by L. Hagerman, Helsingør  相似文献   

16.
Growth and feeding activities of the tintinnid ciliate Favella taraikaensis fed the toxic dinoflagellate Alexandrium tamarense were examined in laboratory experiments. Both growth and ingestion rates of F. taraikaensis as a function of the A. tamarense concentration were fitted to a rectangular hyperbolic equation. The maximum growth and ingestion rates of F. taraikaensis were 1.0 day–1 and 2.8 cells ind. h–1 (carbon specific ingestion rates: 3.5 day–1), respectively, which are both included in the range of previous data reported for Favella spp. feeding on other algae. The gross growth efficiency (GGE) of F. taraikaensis ranged from 0.26 to 0.49 (mean value 0.40) at the concentration of 10–800 cells ml–1, which is within the range of previous data on Favella spp. Also, the growth and ingestion rates and GGE of F. taraikaensis on A. tamarense were not significantly different from the values on another non-toxic dinoflagellate (Heterocapsa triquetra) at two different prey concentrations. This indicates that the toxicity of A. tamarense probably did not influence the feeding and growth activities of F. taraikaensis at concentrations of less than ca. 800 cells ml–1. To evaluate the grazing by F. taraikaensis on A. tamarense blooms in the field, the population dynamics of A. tamarense were simulated based on the growth and ingestion parameters of F. taraikaensis. As a result, the grazing impact by F. taraikaensis was considered to potentially regulate the development of A. tamarense blooms. If the toxicity of A. tamarense does not influence the growth and feeding activities of F. taraikaensis, the occurrence of such grazer plankton are considered to be important for predicting the course of A. tamarense bloom dynamics under natural conditions.Communicated by T. Ikeda, Hakodate  相似文献   

17.
Differences in protein patterns of the soluble protein fraction among the sibling species Marenzelleria viridis (formerly type I) and M. neglecta (formerly type II) were investigated under common environmental conditions using two-dimensional gel electrophoresis (2D-PAGE). Protein expression was determined using general protein staining with Coomassie-blue and compared with radioactive labeling of proteins. In the well-resolved region of stained gels an average of 319 protein spots for M. viridis and 241 spots for M. neglecta could be detected. High sensitivity of radiolabeling allowed separation of an average of 517 and 496 spots for M. viridis and for M. neglecta, respectively. Differences in protein expression between both species could be attributed mainly to qualitative differences in protein patterns. Triplet pattern was used to calculate the genetic similarity of the two species. Thus, 373 protein spots were scored for this analysis; whereas 304 spots were invariant, 36 spots were specific for M. viridis, while 33 spots were specific for M. neglecta. The genetic similarity (F) of the two Marenzelleria sibling species was 0.815. Apart from presence and absence, differences between both species resulted either from slight changes in the isoelectric point or from molecular weight, but rarely from both. Genetic variability was found only among specimens of M. viridis. The experimental conditions to perform two-dimensional electrophoresis for these polychaete species were established for subsequent investigations on a proteomic level. Using 2D-PAGE we expect further insight into the evolutionary adaptation in Marenzelleria spp.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
Previous research on gametic incompatibility in marine invertebrates suggests that for highly dispersive marine invertebrate species, barriers to fertilization among closely related taxa are often incomplete and sometimes asymmetric. The nature of these barriers can dramatically affect the patterns of gene flow and genetic differentiation between species, and thus speciation. Blue mussels, in the genus Mytilus, are genetically distinct in allopatry yet hybrids are present wherever any two species within the group co-occur. The present study sampled M. edulis (L.) and M. trossulus (Gould) in May and June 2001 from the East Bay section of Cobscook Bay, Maine, USA (latitude 44°56′30″N; longitude 67°07′50″W), where the two species are sympatric. Gamete incompatibility was investigated in a series of laboratory fertilizations carried out in July 2001. The proportion of fertilized eggs typically exceeded 80% at sperm concentrations of 103–104 ml?1 among intraspecific matings (n=18), but was <30% even at sperm concentrations in excess of 105–106 ml?1 for interspecific matings (n=13). Further analysis indicated that approximately 100- to 700-fold higher sperm concentrations were required to achieve 20% fertilization in interspecific matings relative to intraspecific matings, indicating strong barriers to interspecific fertilization. The proportion of fertilized eggs did not follow this general pattern in all matings, however. The eggs from two (out of five) M. edulis females were almost as receptive to M. trossulus sperm as they were to M. edulis sperm. In contrast, the eggs from all M. trossulus females (n=3) were unreceptive to M. edulis sperm, suggesting that fertilization barriers between these species may be asymmetric. Given the experimental design employed in this study, the results are also consistent with a strong maternal or egg effect on the level of interspecific gamete compatibility in M. edulis.  相似文献   

19.
The Chilean gastropods Crepipatella dilatata and C. fecunda have different development modes: brooding and direct development in C. dilatata and brooding and planktotrophic development in C. fecunda. Unlike many other congeneric invertebrate species pairs, recent genetic evidence suggests that C. fecunda may have evolved from C. dilatata. To explore the changes involved in this unusual evolutionary path, this study examined the biochemical, energetic, and morphological characters during early development of both species. Mean egg size was slightly smaller for the direct-developing species C. dilatata, and initial energy content was lower—by about 27%—for eggs of that species. In both species, protein content in the eggs was the principal biochemical component. Although females of C. fecunda produce 180 times more eggs than C. dilatata, females of C. dilatata invest 20 times more energy in each of their offspring, through nurse eggs; their embryos have approximately eight times more energy at hatching and about 5 times more energy when they enter the benthos, despite a long planktonic feeding period in the larvae of C. fecunda. Evolutionary switching between modes of development in these species is reflected in shifts in maternal energy investment.  相似文献   

20.
Morpho-functional features potentially involved in defence mechanisms against fish predators (i.e. attachment tenacity, spine length, and test robustness and thickness) have been assessed in two Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula. All four morpho-functional features were significantly and positively related to individual size for both species of sea urchins. Test robustness (i.e. static load needed to break sea urchin tests) was significantly greater for A. lixula (from 3,450 to 15,000 g depending on size) than for P. lividus (1,180–11,180 g). Attachment tenacity (i.e. force needed to dislodge sea urchins from the rocky substrate) was greater in A. lixula (280–3,300 g) than in P. lividus (110–1,450 g), and the difference tended to decrease in relation to smaller sea urchin size. Spine length was greater in A. lixula (1.5–2.9 cm) than in P. lividus (0.5–2.3 cm), but the difference decreased for larger sea urchin size. Test thickness was slightly greater (but not significantly) in A. lixula (0.35–1.10 mm) than in P. lividus (0.12–0.90 mm). These results provide evidence that morpho-functional features of sea urchins could be involved in affecting predation rates by fishes upon P. lividus and A. lixula, with potential implications for the population structure and distribution patterns of the two sea urchins in shallow rocky reefs.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号