首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems.  相似文献   

2.
Smith KE  Schwab AP  Banks MK 《Chemosphere》2008,72(10):1614-1619
Sediments dredged from navigable rivers often contain elevated concentrations of recalcitrant, potentially toxic organic compounds such as polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). The presence of these compounds often requires that the sediments be stored in fully contained disposal facilities. A 3-year field study was conducted at the Jones Island disposal facility in Milwaukee, Wisconsin, to compare bioremediation of PAHs in contaminated dredged sediments in the absence of plants to phytoremediation with Salix nigra (black willow) (SX61), Spartina pectinata (prairie cord grass), Carex aquatalis (lake sedge), Lolium multiflorum (annual rye), and Scirpus fluviatilis (bulrush). Nine PAHs were detected initially in the sediments. Over the 3-year experiment, acenaphthene dissipation ranged from 94% to 100%, whereas anthracene, benzo[a]pyrene and indo[1,2,3-cd]pyrene generally had modest decreases in concentration (0-30% decrease). The remaining five PAHs ranged in degree of disappearance from 23% to 82%. Planted treatments did not enhance PAH dissipation relative to those without plants, but treatments with high biomass yield and high transpiration plant species had significantly less removal of PAHs than unplanted controls. Significant, negative correlations between nitrogen removal and decreases in PAH concentration suggest that competition for nutrients between plants and microorganisms may have impeded the microbial degradation of PAHs in the rhizosphere of the more rapidly growing plant species.  相似文献   

3.
Lability of polycyclic aromatic hydrocarbons in the rhizosphere   总被引:2,自引:0,他引:2  
Cofield N  Banks MK  Schwab AP 《Chemosphere》2008,70(9):1644-1652
Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response. Change in labile PAHs was a predictor for change in total PAH for 3- and 4-ring compounds but not for the 5- and 6-ring. Decreases in labile PAHs were correlated (r(2)>or=0.80) with toxicity in the bioassays except microbial respiration. PAH(wp) was correlated only with nematode toxicity prior to remediation but with none of the tests after remediation. Total PAHs were not correlated with any of the bioassay tests. Tenax-TA appears to have potential for predicting residual toxicity in remediated soils and is superior to total concentrations for that application.  相似文献   

4.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs.  相似文献   

6.
An experiment was conducted to distinguish priming effects from the effects of phytoremediation of a creosote-polluted soil. The concentration of 13 polycyclic aromatic hydrocarbons (PAHs), and their combined soil toxicity (using four bioassays), was determined on recently excavated, homogenized soil and on such soil subjected to a time-course phytoremediation experiment with lucerne. The results showed a high priming effect, with minor positive and synergistic effects of planting and fertilization on PAH degradation rates. At the end of the experiment, PAH degradation reached 86% of the initial 519 mg PAHs kg(-1). Two of the four toxicity tests (bioluminescence inhibition and ostracod growth inhibition) corroborated the chemical data for residual PAHs, and indicated a significant reduction in soil toxicity. We conclude that priming effects can easily surpass treatment effects, and that an unintentional pre-incubation that ignores these effects can jeopardize the full quantitative assessment of in situ bioremediation of contaminated soil.  相似文献   

7.
BACKGROUND: A climate-controlled pot experiment was conducted to investigate the effects of planting alfalfa and applying organic fertilizer on the dissipation of benzo[a]pyrene from an aged contaminated agricultural soil. RESULTS: Short-term planting of alfalfa inhibited the dissipation of benzo[a]pyrene from the soil by 8.9%, and organic fertilizer enhanced benzo[a]pyrene removal from the soil by 11.6% compared with the unplanted and unfertilized treatments, respectively. No significant interaction was observed between alfalfa and organic fertilizer on benzo[a]pyrene dissipation. Sterilization completely inhibited the removal of benzo[a]pyrene from the soil indicating that its degradation by indigenous microorganisms may have been the main mechanism of dissipation. Furthermore, significant positive relationships were observed between benzo[a]pyrene removal and the contents of soil ammonium nitrogen, nitrate nitrogen, and total mineral nitrogen at the end of the experiment, suggesting that competition between plants and microorganisms for nitrogen may have inhibited benzo[a]pyrene dissipation in the rhizosphere of alfalfa and the addition of organic fertilizer may facilitate microbial degradation of benzo[a]pyrene in the soil.  相似文献   

8.
The relevance of germination trials for screening plants that may have potential for use in the phytoremediation of PAH contaminated land was evaluated. The germination and subsequent growth of 7 grass and legume species were evaluated in soil spiked with a pure PAH mixture or coal tar and soil from a former coking plant heavily contaminated with aged PAHs. None of these treatments adversely affected germination of the plants. However, apart from Lolium perenne all species exhibited reduced growth in the coking plant soil after 12 weeks growth when compared to the untreated soil. In the coal tar spiked soil 4 out of the 7 species showed reduced growth, as did 3 out of the 7 in the soil spiked with a mixture of 7 PAHs. Therefore, germination studies alone would not predict the success of subsequent growth of the species tested in the ranges of soil PAH levels studied.  相似文献   

9.
Analytical techniques used to assess the environmental risk of contamination from polycyclic aromatic hydrocarbons (PAHs) typically consider only abiotic sample parameters. Supercritical fluid extraction and sorption enthalpy experiments previously suggested slow desorption rates for PAH compounds in two coal-contaminated floodplain soils. In this study, the actual PAH availability for aerobic soil microorganisms was tested in two series of soil-slurry experiments. The experimental conditions supported microbial degradation of phenanthrene if it was weakly sorbed onto silica gel. Native coals and coal-derived particles in two soils effectively acted as very strong sorbents and prevented microbial PAH degradation. The long history of PAH exposure and degree of coal contamination apparently had no influence on the capability of the microbial soil community to overcome constraints of PAH availability. Within the context of the experimental conditions and the compounds chosen, our results confirm that coal-bound PAHs are not bioavailable and hence of low environmental concern.  相似文献   

10.
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.  相似文献   

11.
Estimates of standing biomass and fluxes of biomass in a mixed-deciduous woodland were derived, and used with results for concentrations of seven polycyclic aromatic hydrocarbons (PAHs) in different compartments of the woodland system to quantitatively assess some of the key fluxes and burdens of PAHs in this complex system. We quantified PAH burdens in air, in leaves of three deciduous tree species, in leaf litter and in soil, and uptake of PAHs by the tree leaves; PAH fluxes in litterfall, and deposition to the litter layer on the woodland floor during winter were calculated from these data. Air burdens exhibited marked seasonal variations for all compounds, with lowest values in summer when combustion-related emissions were low. Leaves did not accumulate large burdens of PAHs while on the trees and consequently, litterfall-associated fluxes of PAHs were small, representing only a fraction of the burdens in the litter layer to which they were deposited. Higher PAH burdens in air in winter, combined with the organic-matter-rich nature of the litter layer, are thought to be responsible for fluxes of PAHs to the litter layer in winter being 20-170 times the peak litterfall fluxes. The soil compartment was calculated to contain 25 years' worth of deposition of benzo[ghi]perylene, the most recalcitrant PAH in this study. Storage quotients for fluoranthene, pyrene, benzo[k]fluoranthene and benzo[a]pyrene burdens in soil represented 7-10 years' worth of deposition, while fluorene and phenanthrene storage in soil approached unity with inputs (1 and 3 years' worth of deposition, respectively). The relative importance of storage and loss processes was therefore closely related to the physico-chemical properties of the PAH, and is discussed in relation to the cycling of carbon in the woodland.  相似文献   

12.
Principles of microbial PAH-degradation in soil   总被引:44,自引:0,他引:44  
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.  相似文献   

13.
An experiment was conducted to reveal the effects of rice cultivation as well as polycyclic aromatic carbohydrates (PAHs) degrading bacterium (Acinetobacter sp.) on the dissipation gradients of two PAHs (PHE and PYR) in the rhizosphere. The results showed that the presence of rice root and bacteria significantly accelerated the dissipation rate of PHE and PYR. The root exudates contributed to the formation of dissipation gradients of PHE and PYR along the vertical direction of roots, with a higher dissipation rate in the rhizosphere and near rhizosphere zone than the soil far away the rhizosphere.  相似文献   

14.
Accumulation of phenanthrene and pyrene in rhizosphere soil   总被引:14,自引:0,他引:14  
A study was conducted to determine PAH concentrations in the rhizosphere of plants grown in soil containing phenanthrene or pyrene. The rhizosphere of tall fescue and wheat grown in sterile soil contained 4-5-fold higher pyrene concentrations than unplanted soil. The rhizosphere of several plant species grown in non-sterile soil temporarily contained appreciably more phenanthrene or pyrene than unplanted soil, but those PAHs were degraded with time. The data suggest that plants accumulate such hydrophobic compounds in the rhizosphere after facilitating their transport toward the roots.  相似文献   

15.
The natural attenuation of polyaromatic hydrocarbons (PAHs) in the vadose zone of a naturally revegetated former industrial sludge basin (0.45 ha) was examined. This was accomplished by comparing the concentration of 16 PAH contaminants present in sludge collected below the root zone of plants with contaminants present at 3 shallower depths within the root zone. Chemical analysis of 240 samples from 60 cores showed the average concentration of total and individual PAHs in the 0-30 cm, 30-60 cm, and bottom of the root zone strata were approximately 10, 20, and 50%, respectively, of the 16, 800 ppm average total PAH concentration in deep non-rooted sludge. Statistically significant differences in average PAH concentrations were observed between each strata studied and the non-rooted sludge except for the concentrations of acenaphthene and chrysene present at the bottom of the root zone in comparison to sludge values. The rooting depth of the vegetation growing in the basin was dependent on both vegetation type and plant age. Average rooting depths for trees, forbs (herbaceous non-grasses), and grasses were 90, 60, and 50 cm, respectively. The deepest root systems observed (100-120 cm) were associated with the oldest (12-14 year-old) mulberry trees. Examination of root systems and PAH concentrations at numerous locations and depths within the basin indicated that plant roots and their microbially active rhizospheres fostered PAH disappearance; including water insoluble, low volatility compounds, i.e. benzo(a)pyrene and benzo(ghi)perylene. The reduced concentration of PAHs in the upper strata of this revegetated former sludge basin indicated that natural attenuation had occurred. This observation supports the concept that through appropriate planting and management practices (phytoremediation) it will be possible to accelerate, maximize, and sustain natural processes, whereby even the most recalcitrant PAH contaminants (i.e. benzo(a)pyrene) can be remediated over time.  相似文献   

16.
Persistent Organic Pollutants (POPs) and Polycyclic Aromatic Hydrocarbons (PAHs) are important classes of compounds of serious environmental concern. These compounds were measured in waters, sediments and soils from several high altitude sites in the Sagarmatha National Park (Nepal) and included in the Himalayan ridge.In water samples, low-level substituted PCBs and PBDEs, along with more volatile PAHs, were the most common contaminants. In sediment and soil samples, the PCB profile was mainly composed of medium-level chlorinated congeners and significantly correlated with altitude. The PAH profile for water and soil samples showed the main contribution of pyrogenic PAHs due to emissions of solid combustion, whereas the profile for sediments indicated the main contribution of pyrogenic PAHs from gasoline emissions. The PAH levels measured in Himalayan samples must be considered as low to medium contaminated, whereas the regarded Himalayan stations can be considered undisturbed remote areas concerning PCB, PBDE and OC compounds.  相似文献   

17.
BACKGROUND, AIM AND SCOPE: For decades, very large areas of former military sites have been contaminated diffusely with the persistent nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). The recalcitrance of the environmental hazard TNT is to a great extent due to its particulate soil existence, which leads to slow but continuous leaching processes. Although improper handling during the manufacture of TNT seems to be a problem of the past in developed countries, environmental deposition of TNT and other explosives is still going on unfortunately, resulting from thousands of unexploded ordnance or low order explosions at munitions test areas and at current battlefields. OBJECTIVE: Sustainable phytoremediation strategies for explosives in Germany, which intend to use trees to decontaminate soil and groundwater ('dendroremediation'), have to consider that most of the former German military sites are already covered with woodlands, mainly with conifer stands. Therefore, parallel investigation of the remediation potential is necessary for both of the selected hybrids of fast growing broadleaf trees, which are waiting for planting and forest conifers, which have already proven for decades that they are able to grow on explosive contaminated sites. MAIN FEATURES: A short literature review is given regarding phytoremediation of TNT with herbaceous plants and some general aspects of dendroremediation are discussed. Furthermore, an overview of our TNT-dendroremediation research network is introduced, which has the strategic goal to make dendroremediation more calculable for a series of potent trees for site-adapted in situ application and for the assessment of tree remediation potentials in natural attenuation processes. RESULTS AND DISCUSSION: Some of our methods, results and conclusions yet unpublished are presented. For a preliminary calculation of area-related annual TNT dendroremediation potential of five-year-old trees, the following values were assessed: Salix EW-13 6.0, Salix EW-20 8.5, Populus ZP-007 4.2, Betula pendula 5.2, Picea abies 1.9 and Pinus sylvestris 0.8 g m(-2) a(-1). For a 45-year-old spruce forest, an annual natural attenuation potential of 4.2 g TNT m(-2) a(-1) was found. CONCLUSION, RECOMMENDATIONS AND PERSPECTIVE: Our main results deliver quantitative proposals for dendroremediation strategies in situ and provide decision aids. Also aspects of growth of raw materials for energy production are considered. Our dendroremediation research concept for TNT and its congeners can be easily completed for other trees of interest and it can also be applied to herbaceous plants. Knowing the current bottlenecks of phytoremediation and considering the known environmental behaviour of other contaminants, elements of our methodological approach may be easily adapted to those pollutant groups, e.g. for pesticides, pharmaceuticals, PAHs, chlorinated recalcitrants and, with some restrictions, to inorganics and to multiple contaminations. Our dynamical dendrotolerance test systems will help to predict tree growth on polluted areas. To provide some light into the black box of TNT dendroremediation, experimental data regarding the uptake, distribution and degradation of [14C]-TNT in mature tree tissues will be reported in the second part of this publication.  相似文献   

18.
Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg(-1) of summation operator12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients.  相似文献   

19.
Cheng KY  Lai KM  Wong JW 《Chemosphere》2008,73(5):791-797
This paper evaluates the effects of pig manure compost (PMC) and Tween 80 on the removal of phenanthrene (PHE) and pyrene (PYR) from soil cultivated with Agropyron elongatum. Soils spiked with about 300mgkg(-1) of PHE and PYR were individually amended with 0%, 2.5%, 5% and 7.5% (dry wt) of PMC or 0, 20 and 100mgkg(-1) of Tween 80. Unplanted and sterile microcosms were prepared as the controls. PAH concentration, total organic matter (TOM), dissolved organic carbon (DOC), total heterotrophic and PAH degrading microbial populations in soil were quantified before and after 60d period. The results indicated that A. elongatum could significantly enhance PYR removal (from 46% to 61%) but had less impact on PHE removal (from 96% to 97%). Plant uptake of the PAHs was insignificant. Biodegradation was the key mechanism of PAH removals (<3% losses in the sterile control). Increase in PMC or Tween 80 levels increased the removal of PYR but not of PHE. Maximal PYR removal of 79% and 92% were observed in vegetated soil receiving 100mgkg(-1) Tween 80 and 7.5% PMC, respectively. Enhanced PYR removal in soil receiving PMC could be explained by the elevated levels of DOC, TOM and microbial populations as suggested by Pearson correlation test. While the positive effect of Tween 80 on PYR removal could probably due to its capacities to enhance PYR bioavailability in soil. This paper suggests that the addition of either PMC or nonionic-surfactant Tween 80 could facilitate phytoremediation of PAH contaminated soil.  相似文献   

20.
BACKGROUND, AIM, AND SCOPE: Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of soil environment. Soil ingestion is of increasing concern for assessing health risk from PAH-contaminated soils because soil ingestion is one of the potentially important pathways of exposure to environmental pollutants, particularly relevant for children playing at contaminated sites due to their hand-to-mouth activities. In vitro gastro-intestinal tests imitate the human digestive tract, based on the physiology of humans, generally more simple, less time-consuming, and especially more reproducible than animal tests. This study was conducted to investigate the level of PAH contamination and oral bioaccessibility in surface soils, using physiologically based in vitro gastro-intestinal tests regarding both gastric and small intestinal conditions. MATERIALS AND METHODS: Wastewater-irrigated soils were sampled from the metropolitan areas of Beijing and Tianjin, China, which were highly contaminated with PAHs. Reference soil samples were also collected for comparisons. At each site, four soils were sampled in the upper horizon at the depth of 0-20 cm randomly and were bulked together to form one composite sample. PAH concentrations and origin were investigated and a physiologically based in vitro test was conducted using all analytical grade reagents. Linear regression model was used to assess the relationship between total PAH concentrations in soils and soil organic carbon (SOC). RESULTS: A wide range of total PAH concentrations ranging from 1,304 to 3,369 mug kg(-1) in soils collected from different wastewater-irrigated sites in Tianjin, while ranging from 2,687 to 4,916 mug kg(-1) in soils collected from different wastewater-irrigated sites in Beijing, was detected. In general, total PAH concentrations in soils from Beijing sites were significantly higher than those from Tianjin sites, indicating a dominant contribution from both pyrogenic and petrogenic sources. Results indicated that the oral bioaccessibility of PAHs in small intestinal was significantly higher (from P < 0.05 to P < 0.001) than gastric condition. Similarly, the oral bioaccessibility of PAHs in contaminated sites was significantly higher (from P < or = 0.05 to P < 0.001) than in reference sites. Individual PAH ratios (three to six rings), a more accurate and reliable estimation about the emission sources, were used to distinguish the natural and anthropogenic PAH inputs in the soils. Results indicated that PAHs were both pyrogenic and petrogenic in nature. DISCUSSION: The identification of PAH sources and importance of in vitro test for PAH bioaccessibility were emphasized in this study. The oral bioaccessibility of individual PAHs in soils generally decreased with increasing ring numbers of PAHs in both the gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric conditions to that in the small intestinal condition generally increased with increasing ring numbers, indicating the relatively pronounced effect of bile extract on improving the bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ( ow ) values. Similarly, total PAH concentrations in soils were strongly correlated with SOC, indicating that SOC was the key factor determining the retention of PAHs in soils. CONCLUSIONS: Soils were contaminated with PAHs due to long-term wastewater irrigation. PAHs with two to six rings showed high concentrations with a significant increase over reference soils. Based on the molecular indices, it was suggested that PAHs in soils had both pyrogenic and petrogenic sources. It was also concluded that the oral bioaccessibility of total PAHs in the small intestinal condition was significantly higher than that in the gastric condition. Furthermore, the bioaccessibility of individual PAHs in soils generally decreased with the increasing ring numbers in both the gastric and small intestinal conditions. RECOMMENDATIONS AND PERSPECTIVES: It is suggested that more care should be given while establishing reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-to-mouth activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号