首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Samples of fish were collected by beach seine throughout the shallow waters of the large Peel-Harvey estuarine system (south-western Australia) in the wet (June to November) and dry periods (December to May) between August 1979 and July 1981. The number of species, density and biomass declined with distance from the estuary mouth and rose with increasing temperature and salinity. Both classification and ordination distinguished the faunal composition of the saline reaches of the rivers from that of the narrow Entrance Channel and two large basins (Peel Inlet and Harvey Estuary). Classification also separated the fauna of the riverine group into wet- and dry-period components, and divided samples taken in the Entrance Channel from those in the basins. Differences between the faunal composition of the Peel Inlet and its tributary rivers were related to differences in salinity regime. The riverine fauna was subjected to much more variable and lower minimum salinities. Species characteristic of the rivers included teleosts such as Atherinosoma wallacei and Amniataba caudavittatus, which are estuarine sensu stricto in southwestern Australia, the semi-anadromous Nematalosa vlaminghi and juveniles of the marine Mugil cephalus. The species diagnostic of the wet periods in the rivers were the estuarine species A. wallacei and Favonigobius suppositus, while the dry periods were characterised by the marine species Atherinomorus ogilbyi and Sillago schomburgkii. Marine species also characterised the Entrance Channel (Favonigobius lateralis, Sillago bassensis), whereas the indicators in Peel Inlet and Harvey Estuary were Hyporhamphus regularis and Apogon rueppellii, both of which can pass through the whole of their life cycle in estuarine as well as marine environments.  相似文献   

2.
The fish faunas of the outer basin (Nornalup Inlet), inner basin (Walpole Inlet) and saline region of the main tributary (Frankland River) of the permanently open Nornalup-Walpole Estuary on the southern coast of Western Australia, were sampled bimonthly for a year using seine and gill nets, and also during a further two months by the former method. Although the Nornalup-Walpole Estuary is permanently open, the catches of fish in its shallows were dominated (98.4%) by estuarine-spawning species, thereby paralleling the situation in the nearby and seasonally closed Wilson Inlet. In contrast, larger representatives of several marine species were present in appreciable numbers in the offshore, deeper waters of both of these estuaries. The delayed recruitment of marine species into these estuaries apparently reflects the distance that the juveniles of these species have to travel from the areas where they are believed predominantly to spawn. The larger representatives of marine species made a greater contribution to the fish faunas of the offshore, deeper waters in the Nornalup-Walpole Estuary than in Wilson Inlet (64.5 vs 36.9%) and, unlike the situation in the latter estuary, they included five species of elasmobranchs, two of which (Mustelus antarcticus and Myliobatis australis) were relatively abundant. Classification and ordination of the combined data for both estuaries demonstrated that the composition of the fish fauna in the offshore, deeper waters of the outer basin of the Nornalup-Walpole Estuary was particularly distinct, with some marine species being restricted to these waters. This is presumably related both to the presence of a permanently open entrance channel and the relatively deep waters found in Nornalup Inlet, which allow the ready exchange of water between the sea and estuary and the maintenance of high salinities in the deeper regions of the outer basin for much of the year. The fish faunas in Walpole Inlet and the tributaries of both the Nornalup-Walpole Estuary and Wilson Inlet were more similar to each other than they were to those in the more seawards end of either estuary. This similarity reflects the apparent preference of certain teleosts, such as the estuarine species Acanthopagrus butcheri and the marine species Mugil cephalus and Aldrichetta forsteri for reduced salinities and/or features associated with riverine environments.  相似文献   

3.
The fish at sites located throughout the large, seasonally closed Wilson Inlet, on the southern coast of Western Australia, were sampled bimonthly between September 1987 and April 1989. Seine nets were used to sample nearshore shallow waters, while gill nets were employed in slightly more offshore and deeper waters. Twenty species were recorded in the shallows, of which the three species of atherinid and the three species of goby comprised >97% of the total catch. In terms of number of individuals, the 27 species recorded in gill nets in the deeper waters were dominated by Cnidoglanis macrocephalus and Platycephalus speculator, and to a lesser extent Engraulis australis, Aldrichetta forsteri, Sillaginodes punctata and Arripis georgianus. Fifty-five percent of the species recorded in the nearshore shallow waters and 18% of those in offshore deeper waters spawn within Wilson Inlet; these species contributed 98.5 and 63.0%, respectively, to the total catches in those waters. Classification and ordination showed that the composition of the fauna in the shallows was similar at all sites throughout the large basin and did not change conspicuously with season. However, the composition of catches taken in offshore waters differed between the lower part of the basin and the middle and upper regions of the basin, which in turn differed from those in the saline reaches of a tributary river. The four diagnostic species of the lower estuary were all marine species, while the three diagnostic species in the river included a marine species (Mugil cephalus) that often penetrates far upstream in other systems, and a species which was confined to the rivers (Acanthopagrus butcheri). The composition of the fish fauna in the offshore waters of the lower estuary between the middle of spring and middle of autumn was different in 1987/1988 (when the estuary mouth was open for only the first two months of that period) from that in 1988/1989 (when the mouth was open for the whole of that period). This difference is related to the greater number of marine species that were retained in the first of these years, when the estuary was open to the ocean for only a short period. The greater retention of marine species in 1987/1988 than in 1988/1989 probably reflects a far lower level of freshwater flusing and/or a less marked decline in salinity.  相似文献   

4.
The present study was undertaken to determine whether the various species of gobies that are found within the large Swan Estuary in south-western Australia are segregated within that system, and to attempt to determine the basis for any differences in their spatial distributions. The Swan Estuary comprises a long entrance channel (lower estuary), two wide basins (middle estuary) and the saline reaches of the tributary rivers (upper estuary). A total of 26232 gobies, representing seven species, was collected using a 3 mm-mesh seine net at 15 sites throughout this estuary on at least one occasion monthly over seven consecutive seasons between September 1983 and March 1985. Favonigobius lateralis and Pseudogobius olorum contributed 47.0 and 47.8%, respectively, to the total catch of gobies at all sites. The densities of each species at each site were used to determine the relative contribution of each species to the gobiid fauna at each of the sites in the lower, middle and upper estuary. Comparisons of these data with those published on the distribution and abundance of gobiid larvae confirmed that F. lateralis, which was found predominantly in the lower estuary, is a marine species that spawns in high salinities near the estuary mouth or in inshore coastal waters. In contrast, the life cycle of P. olorum and Papillogobius punctatus are typically completed within the saline reaches of the upper estuary, and that of Arenigobius bifrenatus within both this region and parts of the middle estuary where the substrate is particularly soft. Afurcagobius suppositus also spawns in this area, as well as in fresh water. Tridentiger trigonocephalus, represented by only eight individuals, is an introduced, marine species that was found mainly in the lower estuary. A single representative of the marine species Callogobius depressus was caught. The relatively low numbers of gobies caught in the middle estuary, where they contributed only about 3.5% to the total number of all gobies at all sites, may represent an aversion to the presence of rougher waters in the large basins. Circumstantial evidence suggests that the sandy substrate and consistently high salinities found in the lower estuary are preferred by F. lateralis, whereas the silty surface to the substrate and lower salinities of the upper estuary are preferred by Pseudogobius olorum. Densities of three of the four most abundant species were higher in either spring or summer than in winter, reflecting the influx of 0 + recruits, and possibly also the tendency for species in estuaries to congregate in the shallows during the warmer periods of the year. F. lateralis fed mainly on polychaetes and crustaceans, whereas P. olorum ingested predominantly algae, reflecting differences in mouth morphology and feeding behaviour, rather than the type of food available.  相似文献   

5.
Catches obtained at regular intervals by beach seining, gill netting and otter trawling at ten, four and six sites, respectively, have been used to determine the contribution of the different species and life-cycle categories of fish to the ichthyofauna of the large Swan Estuary in temperate south-western Australia between February 1977 and December 1981. These data were also examined to investigate the influence of site, season and year on the densities of the more abundant species. A total of 630 803 fish, representing 36 families and 71 species, were caught in the shallows using beach seines during this 5 yr study. Although the majority of these species were marine teleosts that were caught infrequently (marine stragglers), representatives of 7 of the 15 most abundant species were marine teleosts which entered the estuary regularly, and in large numbers (marine estuarine-opportunists). Of the remaining 8 most abundant species in the shallows, 7 completed their life cycle within the estuary (estuarine species) and 1 (Nematalosa vlaminghi) was anadromous, feeding for a period at sea and spawning in the upper reaches of the estuary. The contribution of individuals of the marine estuarine-opportunist category to catches in the shallows declined from nearly 95% in the lower estuary, to 17% in the middle estuary and 6% in the upper estuary. The estuarine and anadromous groups made a considerable contribution to the catches in both the middle and upper estuaries. By contrast, the contribution of freshwater species was small and even in the upper estuary accounted for only 0.2% of the catch. Site within the estuary generally influenced the catches of individual species to a greater extent than either season or year, or the interactions between these factors. When seasonal effects were strong, they could be related to summer spawning migrations into the upper estuary (Nematalosa vlaminghi, Amniataba caudavittatus), spring immigrations into the lower estuary (Mugil cephalus), or winter movements into deeper and more saline waters (Apogon rueppellii). Annual variations in the density of Torquigener pleurogramma were related to marked annual differences in the recruitment of the 0+age class.  相似文献   

6.
A fine-mesh seine net was used at regular intervals to collect fishes from the entrance channel and basin of the Blackwood River Estuary (south-western Australia), from Deadwater Lagoon, which is joined to the entrance channel by a narrow and shallow water-course and thus constitutes part of this estuary, and from Flinders Bay into which the estuary discharges. Sampling was at six-weekly intervals between February and December 1994. The juveniles of some marine species, such as Pelates sexlineatus, Rhabdosargus sarba and Aldrichetta forsteri, were either found only in the estuary or were in far higher densities in the estuary than in Flinders Bay. In contrast, the juveniles of some other marine species, such as Sillago schomburgkii, were relatively abundant in both environments, while others such as S. bassensis, Pelsartia humeralis, Lesueurina platycephala and Spratelloides robustus were either far more abundant in Flinders Bay or entirely restricted to this marine embayment. The various marine species found in inshore waters thus apparently vary considerably in their “preference” for estuaries as nursery areas. Although some marine species were abundant in the shallows of the estuary, the fish fauna of these waters was dominated by the estuarine-spawning species Leptatherina wallacei, Favonigobius lateralis, L. presbyteroides and Atherinosoma elongata. The above regional differences help account␣for the very marked difference that was found between the compositions of the shallow-water␣ichthyofaunas of Flinders Bay and each of the three estuarine regions. The ichthyofaunal compositions of the basin and channel underwent pronounced changes during winter, when freshwater discharge increased markedly and salinities in the estuary thus declined precipitously. This faunal change was mainly attributable to the emigration of marine stragglers, a reduction in the densities of marine estuarine-opportunist species such as Pelates sexlineatus and R. sarba, and the immigration of large numbers of both young 0+ Aldrichetti forsteri from the sea and of L. wallacei from the river. Although most of the above species were also abundant in Deadwater Lagoon, the ichthyofaunal composition of this region did not undergo the same seasonal changes, presumably due to the lack of riverine input and thus the maintenance of relatively high salinities throughout the year. The number of marine straggler species was much lower in Deadwater Lagoon than in the estuary basin, reflecting a far more restricted tidal exchange with the entrance channel. However, the overall density of fishes was far higher in Deadwater Lagoon than in the estuary basin or entrance channel, due mainly to the far higher densities of the estuarine species Atherinosoma elongata and L. wallacei and of the 0+ age class of the marine species R. sarba. The high densities of certain species in Deadwater Lagoon are assumed to be related, at least in part, to the high level of productivity and protection that is provided by the presence of patches of Ruppia megacarpa, an aquatic angiosperm that was not present in the estuary basin or entrance channel. Received: 3 December 1996 / Accepted: 19 December 1996  相似文献   

7.
Fish were collected at regular intervals over 5 yr (February 1977 to December 1981) from ten shallow-water sites located throughout the lower, middle and upper regions of the large Swan Estuary in temperate southwestern Australia. Analysis of the catch data showed that the total number of species and total density of fishes were both influenced to a greater extent by site and season within the estuary than by year. The number of species and density of fishes within the whole system were greatest during the summer and autumn, when salinities and temperatures were at a maximum, and declined with distance from the estuary mouth. This reflects the trends shown by marine species, which comprise many species that occur only occasionally in the estuary (marine stragglers) and others which enter estuaries regularly and in considerable numbers (marine estuarine-opportunists). The density of marine estuarine-opportunists was also correlated with temperature, reflecting the tendency for the species of this category to congregate in the shallows during the summer and autumn. The similar seasonal aggregations of the single anadromous species and representatives of species that complete their whole life cycle in the estuary were frequently related to spawning. The density of the estuarine category was correlated neither with salinity nor distance from the estuary mouth. The number of estuarine species was also not correlated with distance from the estuary mouth. The density of freshwater species was inversely correlated with salinity and positively correlated with distance from the estuary mouth. The composition of the fish fauna changed progressively through the estuary, with that of the lower estuary being the most discrete. The composition also changed seasonally, particularly in the upper estuary where, during the winter and spring, the volume of freshwater discharge increased greatly and as a consequence the salinity declined markedly. The species diagnostic of the lower estuary were generally marine estuarine-opportunists, whereas those of the upper estuary typically belonged to either the estuarine or anadromous categories. The marine estuarine-opportunistMugil cephalus was, however, also one of the diagnostic species in the upper estuary during the winter and spring.Please address all correspondence and requests for reprints to I. C. Potter at Murdoch University  相似文献   

8.
The present study was undertaken to elucidate the way in which the Swan Estuary in south-western Australia is used by the common blowfish Torquigener pleurogramma, a representative of the abundant and widely distributed family Tetraodontidae. T. pleurogramm were collected by beach seine and otter trawl from the Swan Estuary between February 1977 and December 1980 and between May 1984 and February 1986. While T. pleurogramma feeds on a wide variety of organisms in the estuary, the main components of its diet are polychaetes and amphipods for fish <130 mm and bivalve molluscs for larger fish. Numbers of blowfish were inversely correlated with water depth, with densities on the banks (water depth <1.5 m) sometimes reaching 5 fish m-2, and tended to be greater at night than during the day. The density of T. pleurogramma in the shallows was positively correlated with salinity and inversely correlated with distance from the estuary mouth. Numbers increased greatly in the latter half of 1980 and 1985 as a result of the recruitment of large numbers of the 0+ age class (i.e., fish in their first year of life). Blowfish were represented by seven age classes in the estuary and attained a maximum size of 230 mm (220 g). By the end of their first and second years of life, fish had reached approximately 90 mm (14 g) and 125 mm (39 g), respectively. Sexual maturity was generally not reached until the end of the second year of life. The presence of higher gonadosomatic indices and more mature gonads in fish collected just outside than within the estuary indicate that T. pleurogramma leaves the estuary before spawning. Comparisons between lengthfrequency data, allied with information on the prevalence and intensity of gill parasites, indicate that assemblages in estuarine and neighbouring inshore waters remain distinct for many months and that growth within the estuary is faster than in inshore marine environments.  相似文献   

9.
A total of 66814 fish larvae, representing 37 families and 74 species, were collected in samples taken monthly between January 1986 and April 1987 from 13 sites located at frequent intervals throughout the large Swan Estuary in south-western Australia. The Gobiidae was the most abundant family, comprising 88.2% of the total number of larvae, followed by the Clupeidae (3.4%), Engraulididae (2.9%) and Blenniidae (1.0%). The most abundant species were Pseudogobius olorum (53.3%), Arenigobius bifrenatus (31.2%) and Engraulis australis (2.9%). Abundance of fish larvae in the lower, middle and upper regions of the estuary each reached a maximum between mid-spring and early summer, 2 to 4 mo before the attainment of maximum temperatures. Larvae of species such as Nematalosa vlaminghi and Apogon rueppellii were collected only between November and February, whereas those of others such as P. olorum, E. australis and Leptatherina wallacei were present over many months. The times and locations of capture of larvae have been related to the distribution and breeding periods of the adults of these species. The mean monthly number of species was far greater in the lower than upper estuary (14.7 vs 2.7), whereas the reverse was true for mean monthly concentration (42 vs 197 larvae per 100 m3). Classification, using the abundance of each of the 74 species recorded at the different sites, showed that the composition of the larval fish fauna in the lower, middle and upper estuary differed markedly from each other. Most larvae caught in the lower estuary belonged to marine species, whereas those in the upper estuary almost exclusively represented species that spawn within the estuary. The fact that the larvae of the 59 species of marine teleosts recorded during this study were restricted mainly to the lower estuary, and yet contributed only 6.2% to the total numbers for the whole estuary, helps to account for the relatively high species diversity in this region. The lack of penetration of many of these larvae beyond the first 12.5 km of the estuary presumably reflects the weak tidal effect in the wide basins of the middle estuary and saline regions of the tributary rivers. The larvae of the 13 teleosts that typically spawn within the estuary contributed 93.8% to the total numbers of larvae. Most of these estuarine-spawned larvae belong to teleosts that deposit demersal eggs and/or exhibit parental care (egg-guarding and oral and pouch-brooding), characteristics which would maximize their chances of retention within the estuary.  相似文献   

10.
The opening in April 1994 of a deep artificial entrance channel into the shallow, microtidal and large Peel-Harvey Estuary (136 km2) in south-western Australia has led to major changes in the ichthyofauna of this system. This conclusion is based on statistical comparisons between data derived from samples of fish collected seasonally by seine net in the short, narrow and shallow natural entrance channel and in two large basins of the Peel-Harvey Estuary during 1996 and 1997, i.e. after the opening of the artificial channel, and data previously recorded seasonally using the same sampling regime during 1980 and 1981, i.e. before the construction of that channel. These comparisons show that the marked reduction in macroalgal growths that occurred between these two periods was accompanied by a decline in the abundance of fish, and particularly of macrophyte-associated species such as Pelates sexlineatus and Apogon rueppellii. There were also strong indications that the number of fish species usually present in the estuary declined, which would be consistent with a reduction in habitat heterogeneity. The comparisons also imply that the construction of the artificial channel led to: (1) a decline in the extent of interannual differences in the species richness and abundance of fish, presumably reflecting a reduction in the variability of environmental conditions in different years; (2) a greater penetration of the estuary by marine species and an increased contribution of these species to the fish fauna overall; (3) the influence of "season" on the ichthyofaunal compositions of assemblages within the estuary becoming more important than region. The second and third changes reflect a combination of increased tidal flow, which facilitates a more effective dispersal of fish, the exposure of fish to stronger tidal cues, a far greater proximity of the more distal regions of the estuary to the sea and, in the case of the third change, a far less pronounced difference between environmental conditions in the two basins.  相似文献   

11.
The effects of salinity and acclimation time on the net photosynthetic responses of 3 estuarine red algae, Bostrychia radicans Mont., Caloglossa leprieurii (Mont.) J. Ag., and Polysiphonia subtilissima Mont., from Great Bay Estuary, New Jersey, USA, were investigated. The algae were cultured in a series of synthetic seawater media of 5, 15, 25 and 35% S for acclimation periods of 0, 2, 4, 8, and 16 days prior to determining their photosynthetic responses. All species were euryhaline, and demonstrated photosynthesis at all the above salinities. B. radicans, which was more common towards the mouth of the estuary, had a maximum photosynthetic rate at 25% S, whilst C. leprieurii and P. subtilissima, which were more common towards the head of the estuary, had photosynthetic maxima between 15 and 25%, and at 15%, respectively. The curves relating net photosynthesis to salinity were usually similar within a species at different acclimation periods, although statistically significant differences were sometimes noted. The acclimation periods producing maximal net photosynthesis were 0, 2 and 4 days for B. radicans, and 4 days for C. leprieurii, whilst for P. subtilissima there was no significant difference in response for any acclimation period over the range of salinities studied.  相似文献   

12.
Tolerance to hyposalinity of the scleractinian coral S. radians was examined in a mesocosm study. Colonies of S. radians were collected from five basins in Florida Bay, USA, which occur along a northeast-to-southwest salinity gradient. Salinity treatments were based on historical salinity records for these basins. Photophysiology of the endosymbiont Symbiodinium spp. (maximum quantum yield; F v/F m) was measured as an indicator of holobiont stress to hyposalinity. Colonies from each basin were assigned four salinity treatments [The Practical Salinity Scale (PSS) was used to determine salinity. Units are not assigned to salinity values because it is a ratio and has no unit as defined by UNESCO (UNESCO Technical papers no. 45, IAPSO Pub. Sci. No. 32, Paris, France, 1985)] (30, 20, 15, and 10) and salinities were reduced 2 per day from ambient (30) to simulate a natural salinity decrease. Colonies treated with salinities of 20 and 15 showed no decrease in F v/F m versus controls (i.e. 30), up to 5 days after reaching their target salinity. This indicates a greater ability to withstand reduced salinity for relatively extended periods of time in S. radians compared to other reef species. Within 1 day after salinity of 10 was reached, there was a significant reduction in F v/F m, indicating a critical threshold for hyposaline tolerance. At the lowest treatment salinity (10), F v/F m for the more estuarine, northeast-basin colonies were significantly higher than the most marine southwest-basin colonies (Twin Key Basin). Our results suggest that historical salinity ranges within basins determine coral population salinity tolerances.  相似文献   

13.
Pesticides, such as endosulfan, can enter surface waters such as lakes and rivers, potentially posing an ecological risk. Rotifers are a dominant zooplankton species in many inland freshwater lakes in Australia; such lakes can also experience increased salinities. Acute toxicity tests (24?h) were conducted to determine the toxicity of a commercial formaulation of endosulfan to the freshwater rotifer Philodina sp. and to investigate the influence of increasing salinity on endosulfan toxicity. Rotifers were found to be relatively tolerant to endosulfan with an EC50 of 1.75?mg?L?1 (a.i.), with results also suggesting that there are no interactive effects of salinity on endosulfan toxicity.  相似文献   

14.
The aim of this study was to determine whether the composition of the demersal fish fauna in coastal marine waters in temperate Australia changes markedly with increasing water depth and distance from the shore and whether the composition of the fish fauna in water depths of 5 to 35 m undergoes cyclic, seasonal changes. Samples of demersal fishes were therefore collected by trawling over the predominantly sandy substrate at nine sites located in water depths of 5 to 15 m or 20 to 35 m and within 20 km of the shore in four regions along ∼200 km on the lower west coast of Australia. The sampling regime involved trawling for fishes at each site at night in seven consecutive seasons between the summer of 1990/1991 and winter of 1992. A total of 72 435 fishes, representing 77 families, 143 genera and 172 species was caught. The compositions of the fish faunas in offshore waters with depths of 5 to 35 m were shown to differ markedly from those previously recorded for nearshore marine waters in the same regions. However, as some species, such as Sillago burrus, S. vittata, S. bassensis and Rhabdosargus sarba, increase in size, they move out from their nursery areas in nearshore waters into deeper and more offshore waters, where spawning occurs. Ordination showed that, in each of the four regions, the composition of the fish fauna in depths of 5 to 15 m differs from that in depths of 20 to 35 m. This difference is attributable to the fact that some species, such as  S. burrus, S. vittata and Upeneichthys lineatus, are far more abundant in depths of 5 to 15 m, whereas other species, such as S. robusta, U. stotti and Lepidotrigla modesta, occur predominantly in depths of 20 to 35 m. However, the samples collected from the single site that was inshore but in deeper water demonstrate that the composition of the fish fauna is influenced by distance from shore as well as by water depth. The compositions of the fish faunas differed with latitude, largely due to the fact that some subtropical species, such as Polyspina piosae, S. burrus and  S. robusta, did not extend down into the more southern regions. Ordination also showed that the composition of the fish faunas at all but one of the nine sites underwent pronounced and consistent cyclic, seasonal changes. This seasonal cyclicity at the different sites was attributable to sequential patterns of immigrations and emigrations by a number of fish species during the course of the year. These seasonal migrations involved, inter alia (1) movements of certain species from their nursery areas into these deeper waters, e.g.  S. bassensis and Scobinichthys granulatus; (2) migrations into and off the sandy areas of the inner continental shelf, e.g. Arnoglossus muelleri; (3) migrations to spawning areas, e.g. Sillago robusta; and (4) movements into areas where detached macrophytes accumulate in winter, e.g. Cnidoglanis macrocephalus and Apogon rueppellii. Received: 21 August 1998 / Accepted: 9 February 1999  相似文献   

15.
A 4-year study (1972–1976) determined long-term trends of organochlorine residues (DDT, DDE, DDD, PCB's, mirex) and trawl-susceptible organisms in a shallow, river-dominated estuary in North Florida (Apalachicola Bay, USA). Moderate levels of such compounds were found in various species prior to the restricted use of DDT in 1972. A subsequent precipitous decline in organochlorine besidues was attributed to decreased upland usage, major flushing of the river basin in early 1973, and various factors associated with estuarine function. No mirex was found in sediments or aquatic organisms. Apparently, the half-life of organochlorines is relatively short in this bay system. Various statistical methods were used to test the relationships of different physico-chemical and biological parameters. During the 4-year study period, seasonal river flow fluctuations dominated water color, turbidity, salinity, nutrients (NO3), chlorophyll a, and the temporal succession of fishes in the bay. Certain long-term trends of fish associations were noted; relative dominance of key fish species declined and stabilized while bay-wide species richness and diversity increased with time. Qualitative changes in species representation determined the long-term pattern of community variability. This was consonant with a distinctive fish fauna during the first year of sampling. The bay anchovy Anchoa mitchilli was dominant during 9 of the first 12 monts of the project; this influenced the time-related changes in community indices. Temporally clustered fish associations reflected the importance of river flow in the estuarine environment. Direct correlation of fish distribution with the rapid disappearance of organochlorine compounds was complicated by aperiodic natural phenomena such as storms and river fluctuations. Population and community trends appeared consistent with other studies showing similar patterns of dominance of stress-resistant fish populations and related changes in community parameters. In this case, the relatively predictable annual succession of fish associations allowed an appraisal of key forcing functions. Due to the high level of seasonal and annual biological variability in this estuary, there were some problems in the application of linear statistical models to the data base. Although the long-term trend of relative species representation is useful as an index of stress, new techniques are needed to analyze extensive field data so that functions such as trophic interactions are included in the estimation of causal relationships. There are indications that such effects could be related to the impact of organochlorine compounds on estuarine systems.  相似文献   

16.
East Pacific swimming crabs are poorly known ecologically. We trawled samples along 4 estuarine-continental shelf transects to provide information on the population structure and species composition of portunids along environmental stress gradients. Portunids comprised almost 99% of the benthic crabs. Callinectes toxotes dominates the freshest estuarine areas, but is replaced by C. arcuatus in estuary mouth and shallow-shelf samples. Deeper shelf samples are dominated by Euphylax robustus and Portunus sper. Great numbers of E. dovii, a pelagic species, were taken on the shelf; their size distribution implies intraspecific competition. Evidence is given that differences in salinity tolerance account for differential landward limits, but competition, predation by fishes, increased fouling and decreased available food exclude eurytopic species from physicochemically equable shelf waters.  相似文献   

17.
A. I. Payne 《Marine Biology》1976,35(3):277-286
The occurrence and relative frequency of the 5 grey mullet species found in the Black Johnson Estuary, Sierra Leone, have been observed by sampling throughout the year. Examination of stomach contents and scales has also been made. Salinity within the estuary is maximum during the dry season and minimum at the height of the rains. The organic content of the sediment reaches a peak towards the end of the rains, but is low both at the end of the dry season and during the rains. Mullet tend to be most abundant as the rains are finishing and at the beginning of the dry season when the salinity is rising and the organic matter in the sediment is maximum. The mullet encountered in the estuary were Liza falcipinnis (Cuvier and Valenciennes), L. dumerilii hoefleri (Steindachner), Mugil cephalus ashanteensis Bleeker, M. curema Cuvier and Valenciennes and L. grandisquamis (Cuvier and Valenciennes). L. falcipinnis and L. dumerilii hoefleri penetrated furthest up the estuary and have been caught in freshwater some distance up rivers. All species feed principally on the detritus and algae in the estuarine sediment. There is some seasonal variation in the composition of the diet. Comparative data on the organic content of the estuarine sediment and the sand in the stomach of the mullet are given. A field experiment with L. falcipinnis suggests an assimilation efficiency of 52% for this species. Well-marked rings have been found upon the scales of four species, and their possible significance and use are discussed.  相似文献   

18.
Several species of phytoplankton were grown in unialgal, but not bacteria-free, cultures. These clones when exposed to varying salinities, from 5 to 35, showed a marked increase in their rates of photosynthesis at low salinities. The optimum requirement of salinity, however, varied in different species. Observations on the relative abundance of phytoplankton in an estuary, where the salinity changes were fairly large, confirmed that, within limits, waters with low salinities support a greater abundance of phytoplankton in nature. The wide adaptability of phytoplankton to changes in salinity corresponds to the conditions brought about by the monsoon system along the southwest coast of India, where large dilutions are associated with the enrichment of water with nutrients.  相似文献   

19.
Adult Acartia congeners, A. bifilosa, A. clausi, A. discaudata and A. tonsa, have distinct seasonal and spatial distribution patterns in Southampton Water (UK), reflecting patterns of temperature and salinity, respectively. The effect of these factors on other life stages, hatch success and naupliar survival was investigated by exposing the congeners to a range of salinity (15.5–33.3) and of temperature (5–20°C). A. clausi is known to prefer more saline waters, and showed highest hatch success at 33.3 salinity. A. tonsa is most tolerant to dilution, and at 15.5 salinity it had the highest hatch success of all the congeners. Hatch success in both A. bifilosa and A. discaudata was similar over the range of salinities investigated, confirming that they are intermediate species in terms of spatial distribution. The nauplii of all species survived well at the higher salinities and best at 33.3, which allows for differential transport of the poorly swimming nauplii to the mouth of the estuary until size and swimming ability increase, after which they can then return to regions of preferred salinity. The summer species, A. clausi and A. tonsa showed higher hatch success at 20°C, whereas A. discaudata, which is present in the water column all year round, showed no significant temperature-related differences in hatch success. A. bifilosa, which diapauses over summer, showed significantly higher hatch success at 10°C than at 20°C. The physiological relationship between temperature and development time was clear; naupliar survival of all species was highest at 20°C and all congeners reached the first copepodite stage (CI) significantly faster at 20°C. However, no consistent pattern was seen for salinity. It would appear that the adult Acartidae in Southampton Water remain in regions of their preferred salinity and lay eggs there which hatch well. However, because the nauplii are not good swimmers, they are swept towards the mouth of the estuary and into areas of higher salinity, where they remain and develop into more advanced stages before moving back up the estuary to take up their adult distribution pattern.Communicated by J.P. Thorpe, Port Erin  相似文献   

20.
The distributions and diets of the six most abundant species of teleost in the shallows of a large south-western Australian estuary were examined from samples collected between March 1988 and February 1989. Fish were collected monthly by seine net from over bare sand and from within patchy and dense areas of the aquatic macrophyte Ruppia megacarpa. Their gut contents were compared with samples of the benthos and plankton collected from each of these three habitat types. The densities of the atherinids Leptatherina wallacei and Atherinosoma elongata and of the goby Favonigobius suppositus were greatest in dense R. megacarpa, whereas those of the atherinid L. presbyteroides and the goby F. lateralis were greatest over bare sand. The density of the goby Pseudogobius olorum was greater in patchy R. megacarpa than in the other two habitat types. The gut contents of each of the six species was dominated by crustaceans and/or polychaetes, with detritus also making a major contribution to the diet of P. olorum and F. lateralis. The relative proportions of prey items in the guts of fish in a particular habitat corresponded to the preys' relative occurrence in the environment. This indicates that the fish had been feeding predominantly in one particular habitat prior to capture. Within each habitat type, the six species partitioned the available food, the major components of the diet of each species being different. The gobiid species fed mainly on the benthos and the atherinids typically fed higher in the water column; A. elongata and P. olorum tended to be less selective as to where they foraged. There were no consistent differences in either the dietary breadth or the fullness of the guts of any species among habitat types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号