首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Abstract: Reintroduction of captive‐reared animals has become increasingly popular in recent decades as a conservation technique, but little is known of how demographic factors affect the success of reintroductions. We believe whether the increase in population persistence associated with reintroduction is sufficient to warrant the cost of rearing and relocating individuals should be considered as well. We examined the trade‐off between population persistence and financial cost of a reintroduction program for Crested Coots (Fulica cristata). This species was nearly extirpated from southern Europe due to unsustainable levels of hunting and reduction in amount and quality of habitat. We used a stochastic, stage‐based, single‐sex, metapopulation model with site‐specific parameters to examine the demographic effects of releasing juveniles or adults in each population for a range of durations. We parameterized the model with data from an unsuccessful reintroduction program in which juvenile captive‐bred Crested Coots were released between 2000 and 2009. Using economic data from the captive‐breeding program, we also determined whether the strategy that maximized abundance coincided with the least expensive strategy. Releasing adults resulted in slightly larger final abundance than the release of nonreproductive juveniles. Both strategies were equally poor in achieving a viable metapopulation, but releasing adults was 2–4 times more expensive than releasing juveniles. To obtain a metapopulation that would be viable for 30 years, fecundity in the wild would need to increase to the values observed in captivity and juvenile survival would need to increase to almost unity. We suggest that the most likely way to increase these vital rates is by increasing habitat quality at release sites.  相似文献   

2.
Abstract: Success of captive‐breeding programs centers on consistent reproduction among captive animals. However, many individuals do not reproduce even when they are apparently healthy and presented with mates. Mate choice can affect multiple parameters of reproductive success, including mating success, offspring production, offspring survival, and offspring fecundity. We investigated the role of familiarity and preference on reproductive success of female Columbia Basin pygmy rabbits (Brachylagus idahoensis) as measured by litter production, litter size, average number of young that emerged from the burrow, and average number of young that survived to 1 year. We conducted these studies on pygmy rabbits at the Oregon Zoo (Portland, Oregon, U.S.A.) and Washington State University (Pullman, Washington, U.S.A.) from February to June 2006, 2007, and 2008. Before mating, we housed each female adjacent to 2 males (neighbors). Female preference for each potential mate was determined on the basis of behavioral interactions observed and measured between the rabbits. We compared reproductive success between females mated with neighbor and non‐neighbor males and between females mated with preferred and nonpreferred males. Our findings suggest that mating with a neighbor compared with a non‐neighbor and mating with a preferred neighbor compared with a nonpreferred neighbor increased reproductive success in female pygmy rabbits. Litter production, average number of young that emerged, and average number of young that survived to 1 year were higher in rabbits that were neighbors before mating than in animals who were not neighbors. Pairing rabbits with a preferred partner increased the probability of producing a litter and was significantly associated with increased litter size. In captive breeding programs, mates are traditionally selected on the basis of genetic parameters to minimize loss of genetic diversity and inbreeding coefficients. Our results suggest that integrating genetic information with social dynamics and behavioral measures of preference may increase the reproductive output of the pygmy rabbit captive‐breeding program. Our findings are consistent with the idea that allowing mate choice and familiarity increase the reproductive success of captive‐breeding programs for endangered species.  相似文献   

3.
Abstract: Extinctions can leave species without mutualist partners and thus potentially reduce their fitness. In cases where non‐native species function as mutualists, mutualism disruption associated with species’ extinction may be mitigated. To assess the effectiveness of mutualist species with different origins, we conducted a meta‐analysis in which we compared the effectiveness of pollination and seed‐dispersal functions of native and non‐native vertebrates. We used data from 40 studies in which a total of 34 non‐native vertebrate mutualists in 20 geographic locations were examined. For each plant species, opportunistic non‐native vertebrate pollinators were generally less effective mutualists than native pollinators. When native mutualists had been extirpated, however, plant seed set and seedling performance appeared elevated in the presence of non‐native mutualists, although non‐native mutualists had a negative overall effect on seed germination. These results suggest native mutualists may not be easily replaced. In some systems researchers propose taxon substitution or the deliberate introduction of non‐native vertebrate mutualists to reestablish mutualist functions such as pollination and seed dispersal and to rescue native species from extinction. Our results also suggest that in places where all native mutualists are extinct, careful taxon substitution may benefit native plants at some life stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号