首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer‐reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.  相似文献   

2.
Some species may have a larger role than others in the transfer of complex effects of multiple human stressors, such as changes in biomass, through marine food webs. We devised a novel approach to identify such species. We constructed annual interaction-effect networks (IENs) of the simulated changes in biomass between species of the southeastern Australian marine system. Each annual IEN was composed of the species linked by either an additive (sum of the individual stressor response), synergistic (lower biomass compared with additive effects), or antagonistic (greater biomass compared with additive effects) response to the interaction effect of ocean warming, ocean acidification, and fisheries. Structurally, over the simulation period, the number of species and links in the synergistic IENs increased and the network structure became more stable. The stability of the antagonistic IENs decreased and became more vulnerable to the loss of species. In contrast, there was no change in the structural attributes of species linked by an additive response. Using indices common in food-web and network theory, we identified the species in each IEN for which a change in biomass from stressor effects would disproportionately affect the biomass of other species via direct and indirect local, intermediate, and global predator–prey feeding interactions. Knowing the species that transfer the most synergistic or antagonistic responses in a food-web may inform conservation under increasing multiple-stressor impacts.  相似文献   

3.
Climate change driven ocean acidification and hypercapnia may have a negative impact on fertilization in marine organisms because of the narcotic effect these stressors exert on sperm. In contrast, warmer, less viscous water may have a positive influence on sperm swimming speed and so ocean warming may enhance fertilization. To address questions on future vulnerabilities we examined the interactive effects of near-future ocean warming and ocean acidification/hypercapnia on fertilization in intertidal and shallow subtidal echinoids (Heliocidaris erythrogramma, H. tuberculata, Tripneustes gratilla, Centrostephanus rodgersii), an asteroid (Patiriella regularis) and an abalone (Haliotis coccoradiata). Batches of eggs from multiple females were fertilized by sperm from multiple males in all combinations of three temperature and three \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} treatments. Experiments were placed in the setting of projected near-future conditions for southeast Australia, an ocean change hot spot. There was no significant effect of warming and acidification on the percentage of fertilization. These results indicate that fertilization in these species is robust to temperature and \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} fluctuation. This may reflect adaptation to the marked fluctuation in temperature and pH that characterises their shallow water coastal habitats. Efforts to identify potential impacts of ocean change to the life histories of coastal marine invertebrates are best to focus on more vulnerable embryonic and larval stages because of their long time in the water column where seawater chemistry and temperature have a major impact on development.  相似文献   

4.
We analysed changes in the ecological roles of species, trophic structure and ecosystem functioning using four standardized mass-balance models of the South Catalan Sea (North-western Mediterranean). Models represented the ecosystem during the late 1970s, mid 1990s, early 2000s, and a simulated no-fishing scenario. The underlying hypothesis was that ecosystem models should quantitatively capture the increasing exploitation in the ecosystem from the 1970s to 2000s, as well as differences between the exploited and non-exploited scenarios. Biomass showed a general decrease, while there was an increase in biomass at lower trophic levels (TL) from the 1970s to 2000s. The efficiency of energy transfer (TE) from lower to higher TLs significantly increased with time. The ecosystem during the 1990s showed higher biomass and flows than during the 1970s and 2000s due to an increase in small pelagic fish biomass (especially sardines). Exploited food webs also showed similarities in terms of general structure and functioning due to high intensity of fishing already in the 1970s. This intensity was highlighted with low trophic levels in the catch, high consumption of production by fisheries, medium to high primary production required to sustain the catches and high losses in secondary production due to fishing. Significant differences on ecosystem structure and functioning were highlighted between the exploited and no-fishing scenarios. Biomass of higher TLs increased under the no-fishing scenario and the mean trophic level of the community and the fish/invertebrate biomass ratios were substantially lower in exploited food webs. The efficiency of energy transfer (TE) from lower to higher TLs was lower under the no-fishing scenario, and it showed a continuous decrease with increasing TL. Marine mammals, large hake, anglerfish and large pelagic fish were identified as keystone species of the ecosystem when there was no fishing, while their ecological importance notably decreased under the exploited periods. On the contrary, the importance of small-sized organisms such as benthic invertebrates and small pelagic fish was higher in exploited food webs.  相似文献   

5.
The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem‐based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high‐resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high‐resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high‐resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high‐resolution remote sensing into broad‐scale biodiversity and population studies in remote areas, where it can provide much needed detail. Aplicaciones de Imágenes de Muy Alta Resolución en el Estudio y Conservación de Grandes Depredadores en el Océano Antártico  相似文献   

6.
Ocean warming and acidification are co-occurring stressors likely to affect marine biota through climate-driven change to the ocean. We investigated the effects of increased temperature and lowered pH, solely and in combination, on the growth of the endemic Australian bryozoan, Celleporaria nodulosa. Two temperatures and three pH levels were fully crossed in experimental treatments performed in winter 2008 (August) and summer 2009 (February/March). Fragments of C. nodulosa colonies (clones) were collected from Coffs Harbour, NSW, Australia, (30°18′S, 153°09′E) and elongation of colonies was assessed periodically over a 12-day incubation period. Lowered pH in winter significantly decreased growth. Elevated temperatures during the summer significantly impeded the growth of bryozoan colonies, possibly masking the effect of ocean acidification and discovering a maximal thermal tolerance at around 27 °C for C. nodulosa. The effects of decreased pH and increased temperature may be seasonally dependent and particularly acute during the summer months. Thermal stress may in fact be the initial stressor before ocean acidification, negatively affecting organisms in such a way that they are unable to survive before feeling the effects of ocean acidification.  相似文献   

7.
Over the next century, elevated quantities of atmospheric CO2 are expected to penetrate into the oceans, causing a reduction in pH (?0.3/?0.4 pH unit in the surface ocean) and in the concentration of carbonate ions (so-called ocean acidification). Of growing concern are the impacts that this will have on marine and estuarine organisms and ecosystems. Marine shelled molluscs, which colonized a large latitudinal gradient and can be found from intertidal to deep-sea habitats, are economically and ecologically important species providing essential ecosystem services including habitat structure for benthic organisms, water purification and a food source for other organisms. The effects of ocean acidification on the growth and shell production by juvenile and adult shelled molluscs are variable among species and even within the same species, precluding the drawing of a general picture. This is, however, not the case for pteropods, with all species tested so far, being negatively impacted by ocean acidification. The blood of shelled molluscs may exhibit lower pH with consequences for several physiological processes (e.g. respiration, excretion, etc.) and, in some cases, increased mortality in the long term. While fertilization may remain unaffected by elevated pCO2, embryonic and larval development will be highly sensitive with important reductions in size and decreased survival of larvae, increases in the number of abnormal larvae and an increase in the developmental time. There are big gaps in the current understanding of the biological consequences of an acidifying ocean on shelled molluscs. For instance, the natural variability of pH and the interactions of changes in the carbonate chemistry with changes in other environmental stressors such as increased temperature and changing salinity, the effects of species interactions, as well as the capacity of the organisms to acclimate and/or adapt to changing environmental conditions are poorly described.  相似文献   

8.
Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.  相似文献   

9.
海洋酸化对鱼类感觉和行为影响的研究进展   总被引:2,自引:0,他引:2  
海洋酸化是指大气增多的二氧化碳(CO2)溶解于海水而导致海水p H值降低的过程。海洋酸化将改变海水碳酸盐平衡体系,使依赖于原化学环境的多种海洋生物乃至生态系统面临巨大威胁。海洋酸化对钙质生物影响的研究最早引起大家关注,而海洋鱼类具有较完善的酸碱调节机制,大家普遍认为酸化对其影响不大。但在过去的5年中,不少实验证明海洋酸化会影响海洋鱼类仔稚鱼的感觉和行为,减弱其野外的生存能力及增加被捕食率,很可能将威胁自然种群补给量和影响全球的渔业资源量。本文从嗅觉、听觉、视觉及高级意识和相关行为角度,综述近几年海洋酸化对鱼类感觉和行为影响的研究进展,介绍了鱼类神经行为生物学的研究,为全面了解和预测海洋酸化的生态、经济和社会效应提供科学依据。  相似文献   

10.
Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA‐listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA‐listed species. In contrast, results of a model of strikes on ESA‐listed species from turbine blades suggested that few ESA‐listed species are likely to be killed by a commercial‐scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA‐listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA‐listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA‐listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria  相似文献   

11.
Seagrasses are threatened by multiple anthropogenic stressors, such as accumulating drift algae and increasing temperatures (associated with eutrophication and global warming, respectively). However, few seagrass experiments have examined whether exposure to multiple stressors causes antagonistic, additive, or synergistic effects, and this has limited our ability to predict the future health status of seagrass beds. We conducted a laboratory experiment to test whether abundance of Gracilaria comosa (3 levels; 0, 1.2, and 3.4 kg WW m−2), an algae that is resistant to wide environmental fluctuations (e.g. light, temperature, salinity, and oxygen levels), has negative effects on the small ephemeral seagrass, Halophila ovalis and whether the effects are exacerbated by high temperature (3 levels; 20, 25, and 30°C). We found an additive negative effect of the two stressors when tested simultaneously on 14 seagrass performance measures, with most data variability explained by the drift algae. For the individual plant performance measures (above- and below-ground growth and mortality, leaf area, internode distance, and root length and root volume), we found 5 additive effects, 4 synergistic effects, and 5 effects that were significant only for drift algae. We also documented a significant additive effect of drift algae and temperature on dissolved porewater sulphide (DS). A follow-up correlation analysis between DS and the 14 plant performance measures revealed significant or near-significant linear correlations on 9 of these responses (above- and below-ground growth, leaf area and weight, leaf mortality, and internode distance). In summary, we showed (a) that a stress-resistant drift algae can have strong negative effects on a small ephemeral seagrass, (b) this negative effect can increase both additively and synergistically with increasing temperature depending on performance measure, and (c) the negative effects may be mediated by a build-up of porewater DS. An implication of our findings is that resource managers aiming to preserve healthy seagrass beds in an almost certain future warmer world should increase efforts to keep drift algae populations low.  相似文献   

12.
High-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment. To test this hypothesis we employed experimental warming (via International Tundra Experiment [ITEX] chambers) and grazing (via captive Barnacle Geese) in a three-year factorial field experiment. Ecosystem CO2 fluxes (net ecosystem exchange of CO2, ecosystem respiration, and gross ecosystem photosynthesis) were measured in all treatments at varying intensity over the three growing seasons to capture the impact of the treatments on a range of temporal scales (diurnal, seasonal, and interannual). Grazing and warming treatments had markedly different effects on CO2 fluxes in the two tundra habitats. Grazing caused a strong reduction in CO2 assimilation in the wet meadow, while warming reduced CO2 efflux from the mesic heath. Treatment effects on net ecosystem exchange largely derived from the modification of gross ecosystem photosynthesis rather than ecosystem respiration. In this study we have demonstrated that on the habitat scale, grazing by geese is a strong driver of net ecosystem exchange of CO2, with the potential to reduce the CO2 sink strength of Arctic ecosystems. Our results highlight that the large reduction in plant biomass due to goose grazing in the Arctic noted in several studies can alter the C balance of wet tundra ecosystems. We conclude that herbivory will modulate direct climate warming responses of Arctic tundra with implications for the ecosystem C balance; however, the magnitude and direction of the response will be habitat-specific.  相似文献   

13.
Although recent studies have demonstrated that calcification in a wide range of marine organisms is profoundly affected by CO2-induced ocean acidification, the mechanism of this phenomenon is still unclear. To clarify the effects of ocean acidification on the calcification process at the molecular level, we evaluated the expression of three biomineralization-related genes in the sea urchin Hemicentrotus pulcherrimus exposed under control, 1,000, and 2,000?ppm CO2 from egg to pluteus larval stage. We found that the expression of the gene msp130, which is proposed to transport Ca2+ to the calcification site, is suppressed by increased CO2 at pluteus larval stage. Meanwhile, expression of the spicule protein matrix genes SM30 and SM50 was apparently not affected. The results suggest that the combined effects of ocean acidification on the expression of skeletogenesis-related genes as well as the change in seawater carbonate chemistry affect the biomineralization ability of sea urchins.  相似文献   

14.
An ecosystem approach to fisheries management is a widely recognized goal, but describing and measuring the effects of a fishery on an ecosystem is difficult. Ecological information on the entire catch (all animals removed, whether retained or discarded) of both species targeted by the fishery and nontarget species (i.e., bycatch) is required. We used data from the well-documented purse-seine fishery for tunas (Thunnus albacares, T. obesus, and Katsuwonus pelamis) in the eastern tropical Pacific Ocean to examine the fishery's ecological effects. Purse-seine fishing in the eastern tropical Pacific is conducted in 3 ways that differ in the amount and composition of target species and bycatch. The choice of method depends on whether the tunas are swimming alone (unassociated sets), associated with dolphins (dolphin sets), or associated with floating objects (floating-object sets). Among the fishing methods, we compared catch on the basis of weight, number of individuals, trophic level, replacement time, and diversity. Floating-object sets removed 2-3 times as much biomass as the other 2 methods, depending on how removal was measured. Results of previous studies suggest the ecological effects of floating-object sets are thousands of times greater than the effects of other methods, but these results were derived from only numbers of discarded animals. Management of the fishery has been driven to a substantial extent by a focus on reducing bycatch, although discards are currently 4.8% of total catch by weight, compared with global averages of 7.5% for tuna longline fishing and 30.0% for midwater trawling. An ecosystem approach to fisheries management requires that ecological effects of fishing on all animals removed by a fishery, not just bycatch or discarded catch, be measured with a variety of metrics.  相似文献   

15.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

16.
17.
EcoTroph (ET) is a model articulated around the idea that the functioning of aquatic ecosystems may be viewed as a biomass flow moving from lower to higher trophic levels, due to predation and ontogenetic processes. Thus, we show that the ecosystem biomass present at a given trophic level may be estimated from two simple equations, one describing biomass flow, the other their kinetics (which quantifies the velocity of biomass transfers towards top predators). The flow kinetic of prey partly depends on the abundance of their predators, and a top-down equation expressing this is included in the model. Based on these relationships, we simulated the impact on a virtual ecosystem of various exploitation patterns. Specifically, we show that the EcoTroph approach is able to mimic the effects of increased fishing effort on ecosystem biomass expected from theory. Particularly, the model exhibits complex patterns observed in field data, notably cascading effects and ‘fishing down the food web’. EcoTroph also provides diagnostic tools for examining the relationships between catch and fishing effort at the ecosystem scale and the effects of strong top-down controls and fast-flow kinetics on ecosystems resilience. Finally, a dynamic version of the model is derived from the steady-state version, thus allowing simulations of time series of ecosystem biomass and catches. Using this dynamic model, we explore the propagation of environmental variability in the food web, and illustrated how exploitation can induce a decrease of ecosystem stability. The potential for applying EcoTroph to specific ecosystems, based on field data, and similarities between EcoTroph and Ecopath with Ecosim (EwE) are finally discussed.  相似文献   

18.
Hydraulic dredging targeting the bivalve Chamelea gallina in the northern and central Adriatic Sea has been taking place for over 30 years. In the period 2000–2001, 73 commercial dredgers harvested the resource within the sandy coastal area of the Ancona Maritime District (central Adriatic Sea). Despite this, no study aimed at investigating the impact of the fishery on the macrobenthic community of the area has ever been carried out. Sampling was done at 6 monthly intervals in an attempt to relate the impact of hydraulic dredging to different levels of fishing intensity. Data regarding two depth strata (4–6; 7–10 m) were analysed separately by means of permutational multivariate analysis of variance. The results revealed an overall condition of moderate disturbance within the benthic community, especially so within the 4–6 m depth stratum. The response of the benthic community to varying intensities of fishing activity was rapid, occurring within 6 months. Differences in the response of benthic community to differing intensities of fishing activity were found between the two depth strata considered. Significant differences in multivariate location of the benthic community were revealed between the three disturbance levels in both depth strata. Differences in multivariate dispersion were detected above a threshold level of fishing intensity, only within the shallow community. Differences were found between depth strata relating to species diversity and evenness, with significant differences between levels of fishing intensity being evident only within the 4–6 m depth stratum. The results emphasised that, even in a benthic community that is typical of a moderately disturbed environment, the effects of fishing on community structure were still discernible over and above the natural variation.  相似文献   

19.
An ecosystem model of the western English Channel ecosystem in 1994 was used to explore the effects of the use of a fishing policy optimization routine on profits, number of jobs and ecosystem structure. The optimization for single objective led to the specialization of the fishing fleet, with some fleet types being almost excluded. The profits and mainly the job optimizations led to big changes in the ecosystem structure, with loss of diversity, but the overall biomass of all vertebrate groups represented in the model increased considerably. For the objective focusing on ecosystem structure, there was an increase in biodiversity, with many long-lived groups predicted to increase, although the overall vertebrate biomass suffered just a small increase. An “ideal” mixed policy configuration was found when slightly greater weight was given to ecosystem structure than was given to profits and jobs. This scenario led to an overall reduction in effort but also to increased profits and biodiversity, while keeping the number of jobs at the same level as the baseline estimates. The results of the optimizations showed that the average trophic level of the catches is quite resistant to changes in the underlying system structure. On the other hand, despite the high level of aggregation of the model structure, a biodiversity index estimated by the model presented large changes as a function of the weights placed on the single policy functions, reflecting the changes in the system structure. The output of the application of the fishing optimization presented here should be considered in qualitative rather than in quantitative terms as an aid and part contribution to the complicated discussions on future long term management actions. Nonetheless it points to an overall reduction in fishing capacity, an objective widely accepted within the scientific community, while keeping the fishery in a profitable state.  相似文献   

20.
Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top-down and weaker bottom-up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号