首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
城市绿地对周边热环境影响遥感研究--以北京为例   总被引:2,自引:0,他引:2  
城市绿地是缓解城市热环境效应问题的主要因素之一,它不仅在宏观上影响城市区域尺度气候条件,而且在小区尺度直接影响到周边的热环境条件。本文从绿地景观格局的角度出发,利用遥感技术和地理信息技术,以北京市主城区的城市绿地作为研究对象,以绿地周边建筑物作为热环境影响承载体中介,分析了影响建筑热环境的绿地的主要景观因子,开展了城市绿地对周边热环境的影响范围、降温幅度以及绿地景观参数与降温幅度的相关关系研究。首先,从TM遥感影像上人工数字化选取了26个城市绿地斑块,同时提取了其周边建筑物像元;然后,基于定量遥感理论反演了绿地和建筑物的温度,并利用GIS工具统计了绿地和建筑的景观格局信息;最后,基于空间统计分析方法和等温线周长-温度曲线变点方法确定了城市绿地对周围建筑物热环境的影响范围,通过相关性分析探讨了城市绿地景观参数与其降温幅度之间的相关性。研究结果显示:(1)在100 m空间分辨率的尺度下,北京大部分城市绿地斑块对周边100 m范围内的建筑具有降温效应;面积在0.5 km2以上的绿地斑块,对周边100 m范围内建筑物具有明显降温效应,降温幅度在0.46~0.83℃之间,平均降温幅度为0.72℃;面积在0.5 km2以下的,具有较高植被覆盖度的绿地斑块有一定的降温效应,不具有较高植被覆盖度的绿地斑块降温效应不明显;(2)绿地斑块的周长、面积、形状指数和植被覆盖度与其周边建筑物的降温幅度没有显著的相关性。该结果表明,绿地的面积无论多大,其对周边环境的降温效应都限制在一定空间范围内;在布设城市绿地时分散型绿地比集中式大绿地对周边环境的总体降温效应更好。研究结果揭示了城市绿地对周边热环境影响的空间范围、降温幅度以及绿地景观参数与降温幅度的相关关系,可为城市规划建设及环境评价等提供科学参考。  相似文献   

2.
城市绿地对周边热环境影响遥感研究——以北京为例   总被引:2,自引:0,他引:2  
城市绿地是缓解城市热环境效应问题的主要因素之一,它不仅在宏观上影响城市区域尺度气候条件,而且在小区尺度直接影响到周边的热环境条件。本文从绿地景观格局的角度出发,利用遥感技术和地理信息技术,以北京市主城区的城市绿地作为研究对象,以绿地周边建筑物作为热环境影响承载体中介,分析了影响建筑热环境的绿地的主要景观因子,开展了城市绿地对周边热环境的影响范围、降温幅度以及绿地景观参数与降温幅度的相关关系研究。首先,从TM遥感影像上人工数字化选取了26个城市绿地斑块,同时提取了其周边建筑物像元;然后,基于定量遥感理论反演了绿地和建筑物的温度,并利用GIS工具统计了绿地和建筑的景观格局信息;最后,基于空间统计分析方法和等温线周长-温度曲线变点方法确定了城市绿地对周围建筑物热环境的影响范围,通过相关性分析探讨了城市绿地景观参数与其降温幅度之间的相关性。研究结果显示:(1)在100 m空间分辨率的尺度下,北京大部分城市绿地斑块对周边100 m范围内的建筑具有降温效应;面积在0.5 km2以上的绿地斑块,对周边100 m范围内建筑物具有明显降温效应,降温幅度在0.46~0.83℃之间,平均降温幅度为0.72℃;面积在0.5 km2以下的,具有较高植被覆盖度的绿地斑块有一定的降温效应,不具有较高植被覆盖度的绿地斑块降温效应不明显;(2)绿地斑块的周长、面积、形状指数和植被覆盖度与其周边建筑物的降温幅度没有显著的相关性。该结果表明,绿地的面积无论多大,其对周边环境的降温效应都限制在一定空间范围内;在布设城市绿地时分散型绿地比集中式大绿地对周边环境的总体降温效应更好。研究结果揭示了城市绿地对周边热环境影响的空间范围、降温幅度以及绿地景观参数与降温幅度的相关关系,可为城市规划建设及环境评价等提供科学参考。  相似文献   

3.
以上海典型快速城市化地区为例,基于遥感影像数据,综合运用RS/GIS技术和Fragstats 3.3移动窗口法对1997年、2000年、2005年、2008年和2015年5个年份上海绿色空间的景观格局梯度及其多样性时空动态进行分析。随城市发展的绿色空间梯度变化和景观多样性的空间显式化研究可以帮助理解景观格局-过程关系,同时为城市景观格局优化和管理提供支持。结果表明,(1)1997—2015年间,研究区总体上以建设用地的增加和绿色空间的总量减少为典型特征,农田景观面积比例PLAND减少了32.85%,森林绿地PLAND增加了9.44%,水体PLAND增加了1.58%,建设用地PLAND增加了28.59%。(2)研究区绿色空间的景观格局随着城市空间多方向的扩张变化明显,同心矩形带梯度模式分析和多向梯度模式分析结果显示,近20年来,在矩形环4以内中心城区森林绿地PLAND、斑块数量NP、斑块密度PD、景观形状指数LSI的增加,表明中心城区森林绿地景观破碎化越来越严重,人工痕迹较重。在矩形环5以外区域森林绿地PLAND、LPI的增加及NP的下降表明郊区森林绿地景观表现出一定的集聚性;在矩形环5以外区域农田PLAND、最大斑块指数LPI的下降和PD、LSI的升高表明建设用地的扩张使原本均一化的农田景观越来越破碎,形状也越来越复杂。(3)景观多样性时空动态变化分析表明,1997年仅中心城区景观多样性SHDI较低,而2015年SHDI在整个研究区均呈下降趋势。  相似文献   

4.
城市绿地是改善热环境的重要方式之一,当前研究主要集中于以景观指数衡量的绿地空间形态与热环境之间的关系,较少关注以城市公园为主的绿地内部空间结构对热环境的影响及其规划设计实施的可操作性。基于另一种视角——形态学空间格局分析的7个指标量化绿地空间格局,以武汉主城区的其中25个绿地为研究对象,通过2018年9月15日Landsat 8遥感数据反演地表温度,从绿地的点面、边界、廊道三方面分析绿地空间格局对绿地内部平均温度(T)、降温幅度(ΔT)的影响。结果表明:25个绿地可分为内外降温显著型、内部降温显著型、降温效果一般型、降温能力较弱型4类绿地,它们具有显著差异的空间格局主要集中在核心、孤岛与分支。绿地空间格局对自身温度的影响上,T与核心、孔隙指标显著负相关,与孤岛、分支指标显著正相关,可通过提高绿地核心斑块的集中性、核心斑块内部边界营造、减少破碎化小斑块数量、避免仅一端连接核心斑块的廊道等措施,提高绿地自身的降温效果。环线、桥接以非线性方式影响T,可将二者的比例分别控制在5%、17%以内。绿地空间格局对周围温度的影响上,ΔT与核心指标显著正相关,与孤岛、边缘指标显著负相关。ΔT随边缘、分支指标的增加先快速下降后逐渐趋于平稳,需尽可能避免绿地核心斑块被割裂与出现分支。环线仍以非线性方式影响ΔT,适宜控制其比例在6%。  相似文献   

5.
基于Landsat时间序列数据的重庆市热力景观格局演变分析   总被引:2,自引:0,他引:2  
城市热岛效应是伴随城市化而产生的生态环境问题,研究城市热力景观格局的演变有助于掌握城市热岛效应变化的机制与规律,为城市产业合理布局、城市生态环境改善提供科学的决策支持。以重庆市主城九区为研究对象,基于2001年Landsat7 ETM+、2007年Landsat5 TM以及2014年Landsat8 OLI_TIRS三期遥感影像数据,利用辐射传输方程法和Jiménez-Mu?oz et al.(2014)的分裂窗算法反演地表温度,并在此基础上,计算热力景观格局指数,研究重庆市热力景观格局的演变过程。结果表明,(1)2001—2014年,重庆市主城九区热岛和强热岛景观类型范围不断扩大,热岛效应明显增强,渝中区热岛和强热岛所占百分比最高,江北区、南岸区、九龙坡区和大渡口区的增长速度较快。(2)热力景观类型中热岛面积的增加主要由正常区斑块转化而来,而强热岛面积的增加主要由正常区和热岛斑块转化而来,跨越正常区的斑块转化较难。(3)在斑块类型水平上,热岛与强热岛斑块优势度增大。2001—2014年热岛斑块密度减小3.33,平均斑块面积增大6倍;强热岛斑块密度减少0.65,平均斑块面积增大5倍。热岛和强热岛斑块变得大而集中,破碎度减小。热岛间的连通性与强热岛斑块间的连通性越来越高,连通性指数分别增大了3.51和8.41,强热岛斑块形状的复杂程度逐期变大。在景观水平上,2001—2014年重庆市的斑块数量和斑块密度减小,平均斑块面积增大,热力景观破碎化程度逐渐降低,斑块连通性指数高,均大于99.5。聚合度和均匀度指数分别增大14.85和0.09,像素间聚合成斑块的程度变大且斑块类型面积越来越均匀。由此可见,随着城市的发展,重庆市的热环境问题越来越严重,利用热力景观格局指数分析城市热环境,可了解城市热力景观格局的演变趋势,为热岛的缓解提供理论依据。  相似文献   

6.
随着城市化的快速发展,城市热岛现象也越来越突出。作为城市生态系统中两种重要的地物类型,园林绿地和水体对城市热岛均有明显的降温效应,因此对其进行定量研究具有重要意义。以桂林市建成区为研究对象,利用TM影像数据提取了区域的地表温度(LST)、植被覆盖度(FV)以及改进的归一化差异水体指数(MNDWI)等生物物理信息,同时借助空间统计和缓冲区分析方法,对区域典型园林绿地和水体地表温度的空间特征及其相关性进行了定量研究。结果表明:桂林市5城区的地表温度以低温区和中温区为主。高温区与极高温区也占有较大比例,两者占市区总面积27.8%,较全市平均地表温度高约2~4℃,整体上呈现显著的热岛效应。城市中园林绿地和水体的平均地表温度分别为26.76和24.86℃。相关性分析揭示,城市园林绿地和水体面积与其内部地表温度呈现极显著负相关关系(sig=0.001),园林绿地的FV、水体MNDWI则呈显著负相关关系(sig=0.015和sig=0.038),说明地表温度随着上述参数的增大而降低。除典型水体面积与地表温度的拟合曲线为对数函数之外,其他参数的最佳拟合效果均为线性。缓冲区分析说明,不论是城市园林绿地还是水体,都会对外围一定区域的热环境产生影响。伴随城市园林绿地与水体样区缓冲带距离的增大,外围区域的地表温度呈上升趋势,但这种趋势随距离变化在不断减弱,其有效影响范围在距样区边界120~240 m处。通过对比研究发现,城市中较大面积的公园绿地或水体其降温效应要比面积较小者显著,而水体对于周围热场的影响和敏感度要强于园林绿地。  相似文献   

7.
基于TM影像的北京市热环境及其与不透水面的关系研究   总被引:2,自引:0,他引:2  
城市化进程将自然景观转换为以不透水面为主体的人工景观,改变了地表与大气间的水分和能量交换过程,导致了城市热岛效应。城市热岛效应对区域气候、生态环境等产生了一系列影响,其空间分布特征以及影响因素分析已经成为城市气候与环境研究的重要内容。基于2011年7月26日的Landsat/TM卫星影像运用单通道算法反演了北京市的地表温度来表征城市热环境,运用线性光谱分解及VIS模型提取了北京市不透水面盖度来,在此基础上对北京城市热环境的空间分布特征及其与不透水面盖度之间的关系进行了分析讨论。研究表明:北京主城区的地表温度明显高于郊区,城市热岛效应非常显著,其空间分布呈现单核特征,且南部城区的热岛效应要强于北部城区。北京市高温热岛区域和不透水面盖度较高的区域基本重合,两者在空间分布上具有显著的一致性。地表温度随着不透水面盖度的增加而升高,并且其变化速率依赖于不透水面盖度。当不透水面盖度低于40%时,地表温度随着不透水面盖度增加呈指数关系迅速上升,而当不透水面盖度高于40%时,地表温度呈线性缓慢上升。研究结果揭示了不透水面与地表温度的关系,表明不透水面盖度可以作为城市热环境的一个重要指示因子,为城市规划建设及环境评价等提供了科学参考。  相似文献   

8.
以宁波市为研究对象,利用1984─2010年间冬、夏各5景Landsat TM/ETM+遥感影像数据进行地表温度反演,在此基础上使用热岛强度、热岛面积、景观格局指数综合分析了宁波城市化进程中城市热岛在冬、夏两季的演变趋势,得出如下结果,(1)强度方面,冬季平均热岛强度为1.57℃,夏季为8.67℃,夏季明显强于冬季;热岛强度在夏季呈增强趋势,在冬季呈变弱趋势。(2)热岛面积方面,在冬季,平均89%的建成区受热岛效应的影响,而在夏季,该比例为98%。无论冬夏,热岛面积均随城市化的发展持续增加。(3)数量方面,热岛景观在冬季以低等级热岛斑块为主,占热岛面积的96%左右,夏季以中、高等级热岛斑块为主,比例约为热岛面积的92%。无论冬夏高等级热岛斑块个数均随着城市化进程显著增加。(4)形态方面,无论冬夏主要热岛景观类型乃至整个热岛的斑块形状均变得更加复杂。(5)结构方面,热岛景观在冬季总体上逐渐破碎化,各类景观趋向均匀,多样性增加。在夏季则逐渐聚集,逐步向以高等级斑块为主导的格局方向发展,多样性降低。(6)空间分布方面,随着城市化进展,冬夏两季热岛景观斑块都经历了数量增加、等级升高的变化。冬季在北仑的宁波经济技术开发区形成了两个热点区,夏季在三江口周边、甬江口两岸以及经济技术开发区形成了三大高温片区。利用多指标综合分析可以更加全面的反映城市热岛的演变规律,为减缓城市热岛效应提供理论依据。  相似文献   

9.
为了明确城市化发展所导致的城市地表变化对城市热环境时空变化的影响,基于2002年、2008年和2014年的三期遥感影像,采用辐射传输方程法和ISODATA非监督分类法对城市地表进行了地表温度反演和土地利用分类,同时利用NDVI像元二分线性模型法计算了地表的植被覆盖度,最后,通过对研究区域的土地利用、植被覆盖和热环境进行时空变化的统计分析和对比分析,得到如下结果,(1)2002—2014年,城镇用地面积共增加了295.18 km~2,相比2002年,2014年城镇用地面积增加了1.62倍,所占比重增长了10.98%;(2)大量中低植被覆盖度区域转换为中高植被覆盖度区域,植被覆盖度大于0.6的区域面积共增加了220.26km~2;(3)较高温区面积持续增加,共增加841.78km~2,与之相反的是低温区和较低温区面积持续减少,共减少701.71 km~2;(4)城市热环境虽然受到植被覆盖度等地表特征因素的影响,但是城市热环境的持续增高并非完全由于城市化导致的城市地表特征变化所致,全球变暖大环境的影响也是其均温大幅增高的主要原因之一。研究结果可作为改善城市热环境和缓解其负面效应的空间优化与规划的重要科学依据,也可为将来昆明城市发展战略提供科学参考。  相似文献   

10.
柯锐鹏  梅志雄 《生态环境》2010,19(9):2023-2030
城市的发展和城市化进程的加速,导致建设用地的迅速膨胀和生态景观绿地的急剧减少,最终改变了城市热环境。以广州南部快速发展区为例,基于Landsat6遥感影像数据定量分析城市化及绿地系统的变化情况及其城市地表热场和热岛效应空间分布情况,探讨城市热场及热岛效应受城市化和绿地退化(以NDVI为表征)影响的定量关系。研究表明,广州南部地区的热环境状况与其地形特征之间有较密切的联系,城市热环境的分布变化与城镇建设用地和NDVI的分布变化有一定的相关性,特别是与NDVI呈现线性负相关,即地表温度随着归一化植被指数的增大而降低。结果表明,城镇化与绿地退化是导致城市热岛分布变化的影响因素之一。最后从生态角度出发,提出通过构建城市点状绿岛和带状生态廊道来改善城市热环境的可能性。  相似文献   

11.
城市群化使得城市热环境问题变得更为复杂。以2010-2020年4期Landsat影像数据为基础,运用空间分析、景观格局指数与数理统计等方法,分析山西中部城市群景观格局动态演变和热环境分布及变化特征,并定量探究城市群景观格局演变对其热环境的影响作用。研究表明,(1)近10年来山西省中部城市群的建设用地逐年增加,在空间分布上均有向太原市偏移的趋势。(2)研究区地表温度总体呈上升趋势,城市群热岛效应逐渐显现,2013-2016年,高温区重心向东北方移动30.03 km,转移至太原市中轴线偏北方位置,各城市间热环境的连通性加强。(3)城市群的景观格局演变对其热环境有着明显的影响:(1)各景观类型中建设用地、耕地及草地热环境贡献指数较高,林地与水体贡献指数为负,其中林地贡献值为-0.975,贡献指数绝对值最大;(2)从景观格局指数来看,在类型水平上,林地的聚集度指数、平均分布斑块面积、最大斑块所占景观面积比例、景观类型比例与地表温度(LST)呈负相关,斑块密度、边缘密度与LST呈正相关,而在景观水平上,景观形状指数、斑块密度、香浓均匀度指数等与LST呈正相关,2013年各相关系数最大,不同景观类...  相似文献   

12.
探明城市三维景观格局对气象条件影响的规律性,可为城市规划与可持续发展提供科学依据与决策支持。以北京为例,利用北京市2011年大比例尺测绘数据,构建能够在小区尺度上表达景观结构及空间特征、同时可以在一定程度上反映出局地能量、辐射或动力学差异的三维景观格局指数;利用北京市2011年区域自动气象站观测数据,通过在不同空间尺度上开展三维景观格局指数与温度、湿度和风速3个表征局地气象条件的主要因子的相关性分析,研究城市三维景观格局对局地气象条件的影响。结果显示:在500、1 000和2 000 m范围内,景观容积密度(LVD)、景观高度密度(LHD)和天空开阔度(SVF)指数与区域大气环境温度和风速均显著相关;在1 000 m和2 000 m范围内,景观容积密度(LVD)、景观高度密度(LHD)和景观起伏度(LHR)与区域大气环境湿度显著相关。北京城市三维景观格局对大气环境的影响效应非常显著。城市三维空间密度(LVD)越大、高度密度(LHD)越大、景观起伏度(LHR)越大的地方,区域温度越高、湿度越低、风速越低;天空开阔度越低的地方,区域温度越高、风速越低。利用三维景观格局指数评估景观格局对区域气象环境的影响具有可行性,但要注意景观格局指数在空间尺度上的适用性。同时,本文构建的三维景观格局指数可作为地表统计参数来量化表达地表非均匀性特征,为大气数值模式中地表参数化方案提供了一种有效选择。  相似文献   

13.
城市发展过程中土地利用类型及其景观格局的变化是影响城市地表温度的主要原因,为定量揭示城市扩张过程中土地利用景观格局的变化对夏季地表温度的影响及作用机制,以哈尔滨为例,基于1984—2015年Landsat数据,通过分析城市建筑用地和地表温度的时空演变特征,以及地表温度与建筑用地、植被和水体之间的关系,揭示哈尔滨城市扩张过程中夏季城市热岛格局的演变特征及影响因素,为政府部门制定城市热岛效应的缓解措施提供参考。结果表明,1984—2015年哈尔滨市建筑用地面积由187 km~2扩大到571 km~2,平均扩张速度为13 km~2·a~(-1),建筑用地重心向东南方向移动了1.01 km。与1984年相比,2015年哈尔滨市有44.84%区域地表相对温度升高,有10.63%区域地表相对温度下降;从空间分布看,2015年中心城区出现热岛效应减弱、热岛斑块面积减小的趋势,周边区域出现热岛效应加强、热岛斑块面积增大的趋势。城市建筑用地与地表温度之间存在正相关关系,水体和植被与地表温度之间存在负相关关系,建筑用地的增温效应远远大于水体和植被的降温效应。在城市热岛效应分析中,应用Shannon熵的研究结果与景观指数的研究结果具有很好的一致性。在城市建设中,减小集中连片的建筑用地,增加城市绿地面积,是缓解城市热岛效应的有效手段。  相似文献   

14.
上海是我国城市化程度最高的城市之一,快速城市化导致了城市热岛效应显著增强,影响着城市生态环境。了解城市公园对热环境的影响,对指导本市绿地公园的规划与建设,缓解城市热岛效益具有实用价值和参考意义,对国内其他城市的相关研究也有一定参考价值。基于Landsat遥感影像和航空遥感影像,采用RS和GIS技术,定量分析了上海市建成区内的绿地公园对热环境的影响。结果表明:(1)研究区域内高温区域分布广泛,同时有低温区域分散分布,中环和内环的低温区域主要零星分布在河流及绿地公园等地,形成明显的热岛空洞,显示出绿地公园对城市热环境的降温效应;(2)绿地公园对周围区域降温作用明显,平均降温幅度为1.55 K,但降温作用存在明显差异,降温作用随距离增加而减弱,对周围200m区域范围内降温效果较为明显;(3)绿地公园对周围环境的降温作用与其本身结构特征等因素息息相关,降温幅度与公园内人工表面比重、水域比重、公园形状和面积存在较强的相关性,与景观聚集程度和植被分布的相关性相对较弱。  相似文献   

15.
城市绿地及其格局在减轻城市热岛效应方面有重要作用。作者基于卫星遥感开展城市绿色空间改善城市热环境的定量研究,以合肥市3个典型城市功能区(Urban Functional Zone,UFZ)为研究对象,基于Landsat 8 TIRS遥感影像、资源三号高分辨率影像,综合运用RS、GIS等空间分析技术,结合地理统计分析,表征了城市用地特征及其热环境效应,定量分析了小尺度下绿色空间降温特征,探讨了基于绿色空间构建调控城市热环境效应的策略手段,为规避不合理的土地利用与开发模式对城市热岛的影响,合理规划城市绿色空间单元,实现城市的可持续发展提供科学的理论基础和重要技术参考。研究结果表明,(1)在城市功能区尺度上,水体和植被呈现出相对较低的表观辐射通量密度(Apparent Radiant Flux Density,ARFD),分别为25.92 W?m~(-2)和27.95 W?m~(-2),而移动板房、在建用地、道路、低层建筑、高层建筑和人工复合材质的ARFD相对较高,分别为35.32、33.29、31.73、31.91、31.16和31.02 W?m-2。(2)在单元地块水平上,采用单位面积净表观辐射通量进行分析以消除不同大小地块的"尺度效应"。公园和以植被为主的地块对单位面积净表观辐射通量的贡献相对较小,为4.87 k W?hm~(-2)。(3)在景观格局水平上,地块内绿色空间的景观面积比例、最大斑块指数和景观聚集度指数与单位面积净表观辐射通量呈负相关关系,综合分析表明,地块内绿色空间面积越大,分布越集中,对城市热环境的控制作用越强。  相似文献   

16.
城市内部湖泊水体作为城市生态空间的重要组成部分,对城市热岛效应的缓解具有重大意义。基于多源遥感数据,提取广州市中心区内部湖泊水体并反演夏、秋、冬三期不同季相的地表温度,分别从降温强度(ICE)和影响范围(SCE)两个角度,定量刻画城市核心区内部湖泊的热缓释效应,分析湖泊水体的自身景观特征及其周边景观配置对湖泊热缓释效应的影响及其季相变异规律。结果表明,(1)广州市中心城区的地表温度的高温区主要与城市建成区相对应,夏、秋、冬三季湖泊水体分别比中心城区平均温度低4.97、2.78、0.71℃,形成城市中的"冷岛"。(2)夏、秋、冬三季,湖泊水体内部温度主要受水体面积(S)及边界形状(LSI)的影响,湖泊的面积越大或边界形状越复杂,一定程度上湖泊内部的冷岛效应越强,但随着水体面积、形状指数的增大,湖泊内部温度的下降趋势逐渐趋于平缓。(3)从夏季到冬季,湖泊的降温强度及降温范围共同受自身景观特性及湖泊周围景观配置的影响,但具有明显的季相变化特征;增加湖泊的面积、体积及湖泊周围植被面积,将有效提高湖泊的热缓释强度,且林地对湖泊热缓释作用的增强效果强于草地;从降温收益角度出发,湖泊水体的面积、体积分别控制在15 hm2及2 000 000 m3内较为合理,植被面积最好达到湖泊面积的50%,以发挥最大的降温效应。  相似文献   

17.
澜沧江下游景观破碎化时空动态及成因分析   总被引:3,自引:0,他引:3  
景观破碎化深刻影响着景观格局和过程。以澜沧江下游城市——景洪市为研究区域,选取2000、2005和2010年的景观类型数据与对应的SPOT-NDVI遥感数据,对比了移动窗口法和空间自相关法在指示景观破碎化时的精确性和可应用性。采用300 m的移动窗口边长,选取蔓延度指数(CONTAG)、景观形状指数(LSI)、斑块密度(PD)、边缘密度(ED)、最大斑块指数(LPI)和香农多样性指数(SHDI),利用移动窗口法将景观指数空间可视化以指示景观破碎化特征。研究表明,不同景观类型的NDVI值均在0.6以上;2000年、2005年和2010年,Moran’s I值均在0.78以上;进一步分析了NDVI的局部空间自相关指数Moran’s I,结果表明NDVI呈"高—高"自相关的地区大多为常绿阔叶林地带,而NDVI呈"低—低"自相关的地区大多为建筑用地和耕地分布广泛的区域。统计各景观类型的景观指数和空间自相关指数后发现,对于常绿阔叶林和未利用地等景观类型,局部自相关指数高的区域,CONTAG值也高,而LSI值较低,这表明该类景观类型斑块较少且完整,破碎化不明显。通过比较不同景观类型的景观指数和空间自相关系数,发现两种方法在指示景观破碎化上具有良好的可比性。同时,提取了海拔、坡度、坡向、地形起伏度和地面粗糙度等地形因子,分析了NDVI和地形因子之间的局部空间自相关指数Moran’s I,结果表明研究区植被分布在一定的程度上由海拔、坡度、地形起伏度和地面粗糙度所决定。本研究为综合景观指数与空间统计分析揭示景观格局变化和空间异质性提供了参考,并通过景观格局与地形因子的相关性分析进一步解释了景观格局变化与环境变化的生态意义。  相似文献   

18.
目前多采用比较保护地建立前后时间序列上或与邻近区域比较的方法判断保护地的保护成效,而未充分考虑保护地的空间邻近效应和空间异质性,因此影响了其准确性.为进一步改进自然保护地保护成效评估技术方法,识别辨析人为保护管理措施在高寒草地-沼泽湿地区域气候变化背景下的景观生态学效应,以四川若尔盖湿地国家级自然保护区为案例,采用"BACI"试验设计思路,以斑块密度、最大斑块指数和蔓延度指数等景观格局指数等为指标,定量分析若尔盖保护区的空间邻近效应和保护成效.结果显示:(1)保护区内湿地面积呈缩减趋势,灌丛、草地和建设用地面积增加,但沙化地面积减少;(2)若尔盖保护区存在空间邻近效应,为泄漏效应;(3)若尔盖湿地整体上仍呈破碎化趋势,但若尔盖自然保护区内大斑块面积减少趋势得到延缓,斑块间连通性降低趋势减小.本研究表明保护区的保护管理减缓了边界范围内景观破碎化趋势,取得保护成效;建议在进一步加强保护区内人为活动管控的同时,强化邻近区域的保护,以消除正在出现的孤岛化现象.(图4表4参35)  相似文献   

19.
优化绿地空间配置(如破碎度)是改善城市热环境的有效途径。然而绿地破碎度对城市热环境的影响可能随绿化覆盖率的变化而变化,对改善城市热环境提出了巨大挑战,但相关研究十分缺乏。以长沙市为例,利用Landsat地表温度表征城市热环境,使用解译于高分2号遥感影像的城市绿地图在1 m像元尺度量化绿化覆盖率和绿地破碎度(用绿地边界密度表征)。以419个1 km格网为分析单元,应用分段线性回归揭示绿化覆盖率与绿地破碎度间的非线性关系,识别绿化覆盖率阈值并以此为标准将419个1 km格网划分为高绿化覆盖率区和低绿化覆盖率区。以1 km格网平均地表温度为因变量,绿化覆盖率、绿地破碎度、水体覆盖率和裸地覆盖率为自变量从研究区、高绿化覆盖率区和低覆盖率区3个方面建立多元线性回归模型阐明绿地破碎度对地表温度的影响。最后进行方差分解分析绿化覆盖率、绿地破碎度和其他土地覆盖率对地表温度的独立和联合影响。结果显示,1)绿地破碎度随绿化覆盖率的增加先增加后降低,阈值为44.9%。2)整个研究区,4个指标可解释69.1%的地表温度变异,地表温度随绿化覆盖率、水体覆盖率、裸地覆盖率和绿地破碎度的增加显著降低。3)低绿化覆盖...  相似文献   

20.
近17年鄱阳湖区景观格局动态变化研究   总被引:3,自引:0,他引:3  
周云凯  白秀玲 《生态环境》2011,20(11):1653-1658
通过对1989、1999和2006年3期遥感影像进行解译,借助ARCGIS、FRAGSTATS等软件对鄱阳湖区近17年景观格局动态变化进行分析。结果表明:近17年湖区景观空间结构在自然因素和人类活动的影响下发生显著变化。从景观水平上看,湖区整体景观的破碎化程度不断增大,各斑块类型在空间上的分布趋于均匀和分散,景观中斑块的形状渐趋不规则,复杂程度加大。在斑块类型水平上,研究区水体的破碎化程度增加,斑块向着小型化方向发展,斑块之间的结合度降低,形状逐渐变得复杂,水体斑块之间的水力联系减弱;草地和林地的空间结构相对稳定,变化并不显著;耕地虽然是研究区的优势景观类型,但在近17年间,其优势地位被逐渐削弱,破碎化程度也在逐渐加大,斑块形状的规则性降低,各斑块之间的分离性加大;滩地的变化主要受水文情势和泥沙淤积的影响,破碎化程度经历了先加大、后降低的过程,最大斑块面积有所增大;建设用地的变化最为明显,其破碎化程度也有所加大,但斑块间的连接程度相对研究初期有所增加;未利用地是研究区面积最小的景观类型,其景观破碎化程度则有所降低,斑块形状也渐趋简单。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号