首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
环境中微(纳米)塑料的来源及毒理学研究进展   总被引:7,自引:0,他引:7  
微(纳米)塑料是环境中分布广泛的微小颗粒污染物,不同环境介质中微(纳米)塑料的污染状况及其对生物体的毒害效应受到越来越多研究者的关注.本文系统的综述了环境中微(纳米)塑料的来源和微(纳米)塑料对海洋生物的毒性效应,从转运吸收和毒性评价两个方面重点论述了微(纳米)塑料对人体健康潜在的影响,并介绍了由微(纳米)塑料带来的典型污染物毒性效应.研究结果表明,陆地环境中微纳米塑料的来源主要包括污泥的使用、农业上使用的塑料制品、被微纳米塑料污染的灌溉水以及大气沉降,海洋环境中微纳米塑料的来源主要包括陆源的输入、滨海旅游业、船舶运输业、海上养殖捕捞业以及大气沉降;微(纳米)塑料可被很多海洋生物摄取、并在生物体中积累,且可通过食物链层层富集到更高等的生物体中,从而对生物体正常的新陈代谢及繁殖造成影响;微(纳米)塑料的对人体的毒性,与其表面性质、尺寸大小息息相关,通常情况下,尺寸较小的纳米塑料颗粒更容易进入并积累到细胞和组织,而表面带正面的纳米塑料颗粒对细胞生理活动有较为明显的影响;微(纳米)塑料添加剂及表面吸附的污染物在生物体内的释放,对生物体造成的伤害远远超过微(纳米)塑料本身的影响.本研究结果将为系统地和进一步地开展微(纳米)塑料的风险评估及全面深入地研究其毒理学效应提供支持.  相似文献   

2.
环境中有机磷农药污染状况、来源及风险评价   总被引:2,自引:0,他引:2  
环境中农药的污染残留问题备受社会关注,尤其是食品安全这一方面.作为世界上有机磷农药(OPPs)生产和使用的大国,国内环境中OPPs的残留赋存问题尤其受到重视.残留在环境中水体、土壤、生物体的OPPs可能经口、皮肤接触、呼吸等暴露途径进入人体对人体健康造成风险.了解OPPs在国内主要江河湖泊、土壤、生物体中的残留赋存情况并进行风险评价至关重要.本文对比总结了中国环境中水体、土壤、生物体中主要OPPs的含量范围、检出率及其分布特征,并利用美国RBCA健康风险评价模型对其进行健康风险评价和RQ商值法进行水生生态风险评价.结果显示,中国地表水体含量最高的5种OPPs分别是敌敌畏、乐果、对硫磷、马拉硫磷、甲基对硫磷,浓度变化范围ND—30180 ng·L~(-1),北方水体的OPPs污染状况水平要高于南方水体.OPPs风险评价结果显示,地表水、土壤、蔬菜中OPPs的非致癌风险系数(HQ)分别为7.25×10~(-5)—6.93×10~(-1)、9.56×10~(-7)—5.30×10~(-2)、1.08×10~(-2)—7.01×10~(-1),都还未超过1的安全标准,对人体健康不会产生明显的不良影响.地表水中敌敌畏的致癌风险系数(R)范围为2.86×10~(-8)—6.25×10~(-6)在10~(-5)—10~(-6)安全范围内.对比地表水、土壤、蔬菜的HQ值,蔬菜中残留的单体OPPs对人体的健康风险大于地表水和土壤,水生生态风险评价结果中OPPs对糠虾和水蚤RQ值1,处于高风险.  相似文献   

3.
人工纳米颗粒的植物毒性及其在植物中的吸收和累积   总被引:7,自引:0,他引:7  
人工纳米颗粒(engineered nanoparticles,ENPs)在被广泛应用的同时,其潜在的环境风险和对健康的影响引起国内外的广泛重视。植物是人们的主要食物来源,ENPs可能被植物吸收并累积在可食部分,随食物链进入人体而引起健康风险。因此,ENPs的植物毒性及其在植物中的吸收和累积受到越来越多的关注。总结了ENPs的植物毒性及植物对ENPs的吸收、运输和累积,讨论了可能的致毒机制、影响其毒性的因素以及植物的解毒机制,并对未来应该注重开展的研究进行了展望。  相似文献   

4.
近年来,挥发性环甲基硅氧烷(cVMS)在生产和生活过程中的广泛使用导致其环境和人体暴露风险日益增加,由于其具有持久性、潜在的生物积累性和毒性而被受关注。目前,人们对cVMS在全球各种环境介质中的赋存、行为及效应有一定的了解。排入环境中的cVMS大部分进入大气,在水体、沉积物、土壤和生物体中也有一定的含量。研究表明,希腊室内空气降尘中总的环硅氧烷含量中位数最高(1 380 ng·g~(-1)),其次为中国(362 ng·g~(-1));中国污水处理厂总的硅氧烷年人均通量(10 g·y~(-1))低于英国(D4~D6 48.3 g·y~(-1))和美国(D4~D6 93.5 g·y~(-1)),其中大连市一家采用CWSBR工艺的污水处理厂进水中cVMS的总浓度(1.05μg·L~(-1))普遍低于希腊(5.14μg·L~(-1))、西班牙(9.2μg·L~(-1))、加拿大(44μg·L~(-1))和一些北欧国家(17μg·L~(-1));我国大部分废水处理厂污泥中甲基硅氧烷的含量(0.1~lμg·g~(-1)dw)比一些北欧国家(26μg·g~(-1)dw)、希腊(20μg·g~(-1)dw)和加拿大(64μg·g~(-1)dw)等要低得多。中国普通居民吸入+摄食D4~D6的PELs中位数(173 ng·d~(-1))远低于中国普通人群的皮肤暴露(中位数18.5μg·d~(-1)),更低于英国成人日暴露量(1.875 mg·d~(-1))和美国妇女对总硅氧烷的日暴露量(307 mg·d~(-1))。环境中cVMS的行为和效应取决于其理化性质和具体的环境条件。进入大气的cVMS会与·NO_3、O_3和·OH反应,而与·OH反应脱去甲基生成硅醇是其主要的消除机制。污水处理过程中,大部分cVMS被污泥吸附固定,D6吸附污泥的能力最强,其次为D5和D4。挥发、吸附和非生物降解是cVMS在土壤中主要的环境行为。D4和D5可能存在生物放大作用。评估cVMS的TMF(trophic magnification factor)研究结果相互矛盾,且与BCF、BMF和BSAF的评估结果相反。总之,国内外对污水处理过程中cVMS的赋存状态和迁移、转化行为的研究比较多,且以进、出水和剩余污泥为主,而对整个工艺流程中具体变化的细化研究很少,对其生物积累特征、降解机制和降解产物更缺乏深入研究。因此,今后需要补充对其他环境介质、尤其是和人们居住、工作密切相关环境中cVMS分布规律的研究,深入探索其在实际环境中的降解过程,包括其降解产物或中间产物的环境行为,进一步评估其生态环境效应和人类健康风险。  相似文献   

5.
纳米材料的环境行为及其毒理学研究进展   总被引:2,自引:1,他引:1  
随着纳米科技的迅速发展,纳米材料被广泛应用于工业、农业、食品、日用品、医药等领域.在纳米材料广泛应用的同时,其不可避免地会被释放到环境中(包括水体、空气和土壤),对生态系统产生不利影响.与常规物质相比,纳米材料具有独特的物理、化学性质,其对生态系统生物种群和个体的潜在负面影响不容忽视.在总结国内外相关研究基础上,论文对纳米材料在水体、大气和土壤中的环境行为和生态毒性进行了综述.  相似文献   

6.
近年来,纳米颗粒在生活、工业生产中的应用日益广泛,而这些纳米颗粒的应用引起的一系列环境问题越来越被密切关注.纳米材料在使用过后不可避免地会释放到水环境中,不仅会影响水生生物的生长代谢,也会污染水体,影响水源水质.而藻类作为水生食物链的初级生产者,对于纳米颗粒在水环境中的积累和迁移起着至关重要的作用.本文首先总结了不同种类的纳米颗粒对水环境中不同藻类生长代谢的影响和相关的毒性机制,包括破坏细胞完整性、氧化应激胁迫、破坏光合系统、基因水平异常和有毒物质的释放等.其次,系统总结了纳米颗粒表面特性(如粒径、晶型、表面电荷、亲疏水性、光敏性、表面涂覆、老化和纳米颗粒的均相与非均相等)、水环境影响因素(如自然有机物质、环境胶体、离子强度、pH、硬度、光照和温度等)和藻类胞外聚合物对纳米材料毒性的影响.最后,还综述了水环境中关键污染物和纳米颗粒对藻类的复合毒性.对于纳米颗粒对水环境中藻类生长的毒性作用、影响机制以及复合毒性的系统总结,有利于全面了解纳米颗粒的环境行为和生物毒性.  相似文献   

7.
随着科技的飞速发展,纳米类材料在电化学、药物运输、生物传感器等领域中得到了广泛的应用,这导致了其通过各种途径进入水、土壤、大气等环境介质中,对生态环境安全造成潜在威胁.以水体中环境浓度的碳基纳米铜复合材料为受试浓度范围,以环境适应性和污染物耐受性均较强的普通小球藻(Chlorella vulgaris)为对象,研究了水...  相似文献   

8.
本研究采用5种商用铁氧磁体纳米颗粒ZnFe_2O_4、NiFe_2O_4、CoFe_2O_4、MnFe_2O_4、CuFe_2O_4去除水体中的新型污染物双氯芬酸(DFC).研究结果表明,NiFe_2O_4和MnFe_2O_4纳米颗粒可以有效去除水体中的DFC.进一步考察了溶液pH、水体中共存阴离子、天然有机质等因素对NiFe_2O_4和MnFe_2O_4纳米颗粒去除效果的影响.结果表明,溶液pH(2—10)对此2种纳米颗粒去除水体中DFC的效果几乎无影响,而水体中共存阴离子(10mmol·L~(-1))和天然有机质(2—20mg·L~(-1))则使DFC的去除效果均有所降低.准一级动力学模型和准二级动力学模型均可很好地描述NiFe_2O_4纳米颗粒对水体中DFC的吸附过程,而MnFe_2O_4纳米颗粒对水体中DFC的吸附过程则由准二级动力学描述更优.等温吸附研究表明,Langmuir模型和Freundlich模型均能够描述NiFe_2O_4和MnFe_2O_4纳米颗粒对DFC的吸附过程,且随着DFC平衡浓度的增加,2种铁氧磁体对DFC的饱和吸附量均随之增加.  相似文献   

9.
随着纳米材料在日常生产生活中的广泛应用,部分纳米颗粒物不可避免地会通过废弃物排放等途径进入海洋.当纳米颗粒物与海洋中的污染物(如与重金属)共存时,因其独特的物化特性往往会成为污染物的良好载体并在生物体内累积,从而增加已有污染物和生物的相互作用,对海洋环境构成潜在的生态风险.已有的研究更多关注单一纳米材料的生态毒性效应,有关纳米颗粒物与污染物的复合生物效应的研究较少.因此,本文研究了已广泛应用的纳米Si O2与常见的重金属污染物Hg~(2+)对东海常见海洋微藻-中肋骨条藻(Skeletonema costatum)的联合毒性效应.结果表明,Hg~(2+)会抑制中肋骨条藻的生长,24 h-EC50、48 h-EC50和72 h-EC50值分别为56.3μg·L~(-1)、58.6μg·L~(-1)和36.8μg·L~(-1);低浓度的纳米Si O2(1 mg·L~(-1)和5 mg·L~(-1))未对中肋骨条藻的生长产生抑制作用,而较高浓度的纳米Si O2(≥10 mg·L~(-1))会显著(P0.05)抑制中肋骨条藻的生长,并且提升微藻超氧化物歧化酶SOD的活性,影响微藻的抗氧化系统.添加1 mg·L~(-1)纳米Si O2会增强Hg~(2+)对中肋骨条藻的生长抑制作用,Hg~(2+)的24 h-EC50和48 h-EC50分别下降至41μg·L~(-1)和43μg·L~(-1),虽然1 mg·L~(-1)纳米Si O2本身没有对中肋骨条藻产生生长抑制作用,但是能够明显增强Hg~(2+)对中肋骨条藻的毒性.纳米Si O2对Hg~(2+)有着较强的吸附能力,在60 min时,100 mg·L~(-1)纳米Si O2对100μg·L~(-1)的Hg~(2+)的吸附率为90.08%,最大吸附量为5.92 mg·g~(-1).吸附了Hg~(2+)的纳米Si O2在中肋骨条藻内的累积可能是造成这种协同毒性的主要原因.  相似文献   

10.
频繁的水动力扰动是大型浅水富营养化湖泊——太湖的一个重要环境特征;氨基酸作为易被生物利用的碳氮源,是湖泊生态系统重要组分之一,影响着湖泊中生源要素循环。因此,研究台风过程中藻类富集区氨基酸浓度和组分的变化,有助于更好地揭示蓝藻水华的形成机制。于2015年7月9-14日台风"灿鸿"经过太湖期间,测定了风速、风向、理化指标以及沉积物氨基酸(SAA)、水体中颗粒态氨基酸(PAA)和溶解态氨基酸(DAA)浓度及组成,分析了水体和沉积物中氨基酸浓度、组分和形态的变化规律。研究发现,SAA浓度在台风期呈现先下降后回升的趋势。DAA浓度在台风期浓度较低,在2.97-3.40μmol·L~(-1)之间,而在台风后迅速增至7.36μmol·L~(-1)。在台风期,表层和底层PAA浓度分别从7.98μmol·L~(-1)和7.03μmol·L~(-1)增加至109.00μmol·L~(-1)和66.00μmol·L~(-1);在台风后期随着蓝藻水华的爆发,表层和底层PAA浓度分别增加到588.28μmol·L~(-1)和246.63μmol·L~(-1)。台风过程氨基酸组分以GLY(甘氨酸)和ALA(丙氨酸)为主,组分变化主要受到台风后期蓝藻水华的影响。研究结果表明,台风过程中太湖藻类富集区氨基酸的变化先由沉积物再悬浮释放,随后为沉积物、其他湖区蓝藻迁入和自身降解特性等因素共同影响导致。  相似文献   

11.
水环境中的微(纳米)塑料对水生生物具有潜在的危害。为了评估微(纳米)塑料对水生生物的毒性效应及生态风险,本研究在广泛查阅并分析微(纳米)塑料相关毒理学研究数据的基础上,利用物种敏感性分布(Species Sensitivity Distributions,SSD)方法对其中5门10科11种水生生物的急性毒理数据进行曲线拟合;计算对应的5%危害浓度(the hazardous concentration for 5%of the species, HC_5)和潜在影响比例(potential affected fractions, PAF);计算了相应的急性生态效应阀值(predicted no effect concentration, PNEC_(acute)),并比较了各类水生生物对微(纳米)塑料的敏感性及其所受生态风险。结果表明,目前已有数据中微(纳米)塑料对费氏弧菌(Vibrio fischeri)的生态风险最大,对朱氏四爿藻(Tetraselmis chuii)的生态风险最小;基于Reweibull模型对水生生物数据所推导的PNEC_(acute)为0.185μg·L~(-1),约为当前微(纳米)塑料在水体环境中浓度的30%。利用SSD来预测微(纳米)塑料不同暴露浓度下对水生生物的PAF,发现当微(纳米)塑料暴露浓度小于10μg·L~(-1)时,水生生物所受的影响在可接受范围内;当暴露浓度达到1 000μg·L~(-1)时,将有26%的物种受到微(纳米)塑料的危害。此外,利用Rurrlioz软件估算了世界典型淡水与海水水域表层水体中微塑料对水生生物的PAF值,发现其PAF预测值都为0;将各水域微塑料浓度与急性生态效应阀值PNEC_(acute)比较后发现,除太湖外,其他水体环境中微塑料浓度都低于PNEC_(acute),说明如果只考虑微塑料本身的影响,目前世界典型水域表层水中微塑料对水生生物的危害程度大部分都在可接受的范围之内。  相似文献   

12.
作为目前普遍使用的阻燃剂主要种类之一,有机磷系阻燃剂被大量应用于各领域,从而导致了其在环境中的持续释放和分布,由此引发的环境问题逐步引起了人们的广泛关注。本文对全球范围内有机磷系阻燃剂在水体、大气、土壤、沉积物以及生物体内等环境介质中的残留现状进行了分析,并对其生态危害和生态风险进行了总结,同时对目前该领域仍有待探讨的问题及研究趋势进行了讨论。  相似文献   

13.
张瑾  李丹 《环境化学》2021,40(1):28-40
微塑料是粒径小于5 mm的塑料颗粒,纳米塑料是粒径小于1 μm的塑料颗粒.微/纳米塑料广泛存在于各种环境介质中,由于其粒径小、比表面积大,很容易被直接吸入、经口食入或皮肤浸入至体内,造成毒害作用,危害健康.本文主要总结了环境中微/纳米塑料在水、大气、土壤和食品中的污染现状,阐述了其对生物体可能产生的毒性效应,探讨了其对...  相似文献   

14.
为评价江苏典型中华绒螯蟹(Eriocheir sinensis)养殖区抗生素污染水平和生态风险,利用超高效液相色谱-串联质谱仪(UPLC-MS/MS)分别检测了江苏高淳和金坛4个中华绒螯蟹养殖塘水体和沉积物中大环内酯类、四环素类、β-内酰胺类、喹诺酮类和磺胺类5类抗生素水平。结果表明:研究区中华绒螯蟹养殖水体中均存在一定程度的抗生素污染。高淳养殖水体中污染物主要为喹诺酮类、四环素类和大环内酯类抗生素,而金坛养殖水体中5类抗生素分布均匀。4个养殖塘中,养殖塘GC2水体中抗生素检出浓度最高,主要包括盐酸金霉素(241.99 ng·L~(-1))、螺旋霉素(198.53 ng·L~(-1))、环丙沙星(168.81 ng·L~(-1))、沙拉沙星(165.40 ng·L~(-1))、诺氟沙星(126.17 ng·L~(-1))、恩诺沙星(117.42 ng·L~(-1))和依诺沙星(103.08 ng·L~(-1));而沉积物中抗生素含量均较低。水体抗生素浓度与对应的水质指标的相关性分析结果显示,水体克林霉素、强力霉素和青霉素G钠盐浓度与COD_(Mn)呈显著相关。采用风险商值法对水体残留抗生素进行风险评估,结果表明江苏高淳和金坛中华绒螯蟹养殖环境中残留抗生素具有一定的生态风险,尤其是养殖塘GC2水体中大环内酯类和喹诺酮类抗生素对相应敏感物种的风险较高,直接影响藻类等浮游植物的生长。建议控制该类抗生素在养殖过程中的使用,以降低生态风险。  相似文献   

15.
纳米金-氧化铝(AuNPs-Al_2O_3)复合材料作为固相萃取材料用于富集环境水体中总溶解性汞.纳米金负载于氧化铝表面防止其团聚,同时有利于吸附剂分离.纳米金-氧化铝复合物可以吸附无机汞及有机汞,并将其转化为元素汞(Hg~0),经HCl洗脱后使用原子荧光测定总汞含量.考察了影响总汞富集与测定的因素,包括待测样品pH、洗脱液种类和用量、萃取时间以及干扰离子等.在最佳的萃取条件下,水中总汞的检出限为0.3 ng·L~(-1),富集倍数为196(400 mL样品).线性范围为1.0—40 ng·L~(-1),相关系数为0.998.结果表明,纳米金-氧化铝纳米复合材料具有成本低、效率高及稳定性高的特点,可以应用于环境水体中总溶解性汞的日常测定.  相似文献   

16.
王毛兰  刘景景 《环境化学》2019,38(10):2348-2355
为了探讨网箱养殖对水体的影响,选取了位于鄱阳湖北岸的都昌县网箱养殖水域为研究对象,于2017年10月和2018年3月对网箱区、外围区和对照点的水体环境进行了分析调查,探讨了网箱养殖对养殖区水体水环境(水温、DO、pH、Chla、TN、TP等)的影响,并利用综合营养状态指数对水体的富营养化状态进行了评价.结果表明,网箱养殖活动对养殖区水体水温和pH几乎没有影响;而对DO、Chla和营养盐含量的影响较明显.3月和10月研究区水体的DO明显低于对照点,Chla明显高于对照点.3月和10月网箱区水体的TN变化范围分别为2.26—2.40 mg·L~(-1)和2.05—2.72 mg·L~(-1),对照点分别为1.49 mg·L~(-1)和1.14 mg·L~(-1);TP的变化范围分别为0.24—0.42 mg·L~(-1)和0.11—0.23 mg·L~(-1),对照点分别为0.18 mg·L~(-1)和0.11 mg·L~(-1);TN和TP含量的最大值均出现在网箱区;网箱区水体NH~+_4-N的变化范围分别为0.66—1.05 mg·L~(-1)和0.18—0.39 mg·L~(-1);NO~-_3-N的变化范围分别为0.72—1.01 mg·L~(-1)和0.38—0.62 mg·L~(-1);3月研究区水体的NH~+_4-N、NO~-_3-N、TN和TP含量整体高于10月.养殖水体处于中营养,尚未出现富营养化.  相似文献   

17.
纳米金属氧化物对土壤酶活性的影响研究进展   总被引:1,自引:0,他引:1  
纳米金属氧化物的大量生产和广泛应用使其不可避免地进入环境中,土壤是其释放到环境中主要的汇。纳米颗粒由于尺寸效应,具有许多独特的物理化学性质,其进入环境后潜在的生态和健康风险问题日益受到研究者的关注。土壤酶是土壤生物化学过程的主要参与者,也是生态系统物质循环和能量流动过程中最活跃的生物活性物质。土壤酶活性的变化能反映土壤中生化反应的情况,可作为评价土壤中纳米材料污染状况的生物学指标。本文较系统地回顾和总结了纳米金属氧化物对土壤酶活性的影响及可能的影响途径,探讨了纳米金属氧化物作用于土壤酶的主要影响途径,并展望了未来研究主要发展方向。  相似文献   

18.
纳米氧化镍(nNiO)作为一种广泛使用的纳米颗粒,其水生毒理效应研究还很有限。为探索n Ni O对海洋贝类的毒性机制,本研究将长牡蛎(Crassostrea gigas)置于不同浓度(0、1、10、100 mg·L~(-1))的n Ni O中暴露96 h,分别测定鳃和消化腺组织的丙二醛(MDA)含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)以及过氧化氢酶(CAT)活性,并通过实时荧光定量PCR技术测定了鳃和消化腺中应激蛋白HSP70和AOX基因的表达变化。结果显示:在100 mg·L~(-1)n Ni O处理下,2种组织中MDA含量均显著性升高(P0.01),显示纳米颗粒造成了长牡蛎的脂质过氧化,并可能引起相应的氧化损伤。同时,n Ni O暴露也诱导了长牡蛎抗氧化酶(SOD、CAT和POD)活性的改变。其中,SOD和CAT活性在10 mg·L~(-1)浓度处理组达到最高,而POD活性在1 mg·L~(-1)浓度组即达最高值。在高浓度n Ni O(100 mg·L~(-1))胁迫下,3种抗氧化酶的活性均比低浓度(1和10 mg·L~(-1))处理组降低,表明抗氧化酶的保护作用在较低浓度暴露下更有效;而热激蛋白(hsp70)和交替氧化酶(aox)基因却分别在长牡蛎消化腺和鳃组织中上调表达(P0.01),并表现出一定的组织差异。说明高浓度纳米颗粒暴露中主要是应激蛋白发挥了作用。本文结果为纳米氧化镍对海洋双壳贝类的毒性机制研究及生态风险评估提供了基础数据。  相似文献   

19.
金霉素是一种广谱性抗生素,在水中溶解度高且不易为微生物降解,是威胁环境安全和人畜健康的潜在隐患。以榆中县某污水厂浓缩污泥为基体制备生物炭,通过化学沉淀在其表面负载FeCu颗粒用于处理金霉素废水。结果表明,负载FeCu颗粒后的生物炭对金霉素的吸附率显著提高至98.56%,相比初始生物炭提高了81.08%。当材料的投加量控制在5 g·L~(-1),CTC质量浓度控制在500 mg·L~(-1),溶液pH=4,Fe?Cu物质的量比为3?1时,生物炭脱除金霉素能力达到峰值386.93 mg·g~(-1)。SEM及BET验证了材料的高表面积及多孔结构。吸附等温线、动力学和热力学的分析结果表明,复合材料对金霉素的去除符合准二级动力学模型,吸附方式被认为是物理化学吸附和吸热过程。各类表征的结果也表明吸附机制可以归结于氢键结合、π-π堆积作用、金属配位、静电吸引以及电子转移等作用。研究结果表明合成的材料是高效的金霉素吸附剂,为金霉素引起的污染水体处理提供了一定思路。  相似文献   

20.
纳米材料被广泛应用于食品、医疗、化妆品等领域,大量的纳米材料被排入水体,由此引起广泛的水环境污染问题。纳米材料因其小尺寸,较大比表面积的特性,在环境中极易吸附其他污染物而造成复合暴露风险,增加其生物效应的复杂性。本文着重讨论纳米塑料、氧化石墨烯、纳米二氧化钛及单壁碳纳米管与水环境中农药、重金属、持续性有机污染物等的复合暴露风险及对生物体产生的毒性影响,从纳米材料与水体污染物的交互作用和细胞毒作用机制方面论述了纳米材料介导的复合暴露毒性机理,并就构建复合暴露模型进行展望,提出从分子水平上揭示复合毒性规律的研究方向,为水生态污染风险评估提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号