首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用乌鲁木齐市中心区域气象局和黑山头2013年1月1日-2014年2月28日期间Grimm180在线监测数据,对乌鲁木齐市大气气溶胶数浓度和PM_(2.5)质量浓度的分布特征及其影响进行了分析,为深入了解乌鲁木齐市颗粒物污染现状,确定乌鲁木齐市大气污染治理重点,制定大气污染防治规划提供依据。结果表明,(1)气象局和黑山头气溶胶数浓度分布趋势一致,0.25~0.28μm之间的粒子数浓度最大;整体趋势表现为双峰型,第1峰出现在0.30~0.35μm之间,峰值分别为467.0和455.4 particle·cm~(-3);第2峰出现在4.0~5.0μm之间,峰值较小;粒径小于2.5μm的粒子数占到了粒子总数的99.88%;在粒径0.25~0.45μm范围内冬季气溶胶粒子数浓度最高,在粒径0.45μm范围内秋季气溶胶粒子数浓度最高;在粒径0.25~1μm范围内夏季气溶胶粒子数浓度最低,在粒径1μm范围内冬季数浓度最低;0.25~0.5μm粒径段内粒子占粒子总数的比例大小顺序为冬春夏秋;0.8~2.5μm之间不同粒径段的粒子占粒子总数的比例大小顺序为夏秋春冬;PM_(2.5)数浓度小时变化采暖期表现为双峰型,非采暖期为不太明显的三峰型。(2)观测期间气象局和黑山头PM_(2.5)平均质量浓度分别为61.77,43.42μg·m~(-3),日平均值超标率分别是30.81%和16.44%。采暖期气象局PM_(2.5)质量浓度小时变化呈现单峰,在19:00─21:00出现峰值;黑山头则呈现双峰,在6:00-8:00出现峰值,20:00出现一个不太明显的小峰;非采暖期气象局与黑山头PM_(2.5)质量浓度小时变化趋势一致,均表现为双峰型。两个站点PM_(2.5)质量浓度的季节变化均表现为冬季秋季春季夏季,特殊的地理位置和不同季节污染源的排放强度、气象条件是导致PM_(2.5)质量浓度随季节变化的主要原因。  相似文献   

2.
采集了北京西三环地区的PM2.5样品,利用超声提取(UE)-固相萃取法(SPE)分离富集得到PM2.5中的多环芳烃(PAHs),对不同的固定相及洗脱液比例进行PAHs回收率比较,得到最优预处理条件.建立了基于HPLC-UV的PM2.5中PAHs分析方法,定量检出17种典型PAHs.对2014年4月12日至2014年5月1日期间PM2.5中PAHs污染特征进行分析,结果显示,PAHs总浓度(∑PAHs)范围为2.6—145.7 ng·m-3,平均浓度为32.2 ng·m-3,不同环数PAHs所占比例顺序为5环2环3环6环4环,呈富5环的特征.PM2.5质量浓度与∑PAHs及苯并[a]芘(Ba P)均呈现出良好的正相关性,R2分别为0.8和0.6.  相似文献   

3.
大气细颗粒物PM_(2.5)是危害人体健康和环境最主要的空气污染物之一,对其水溶性离子的研究是一项非常必要而迫切的工作。文章对乌鲁木齐市中心区域树木年轮实验室和黑山头2013年1月-2014年2月期间采集的大气细颗粒物样品,利用离子色谱仪分析了其中的水溶性离子分布特征,采用硫转化率(SOR)、离子相关性分析等分析其可能来源,结果表明:年轮室和黑山头PM_(2.5)中总离子浓度平均值分别为88.03和65.11μg·m~(-3),分别占PM_(2.5)质量浓度的51.21%和33.8%。年轮室各种离子的季节变化明显:SO_4~(2-)、NO_3~-、Cl~-和NH_4~+表现为冬季秋季春季夏季,Na~+表现为冬季秋季夏季春季,Ca~(2+)表现为秋季夏季春季冬季。SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中主要的离子,(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3是乌鲁木齐PM_(2.5)中水溶性组分的可能结合方式。Cl~-和K~+主要来源于化石燃料和生物质的燃烧排放,Ca~(2+)和Mg~(2+)主要来自土壤、二次扬尘和燃煤。乌鲁木齐大气PM_(2.5)中ρ(NO_3~-)/ρ(SO_4~(2-))为0.40,说明目前固定排放源仍然是乌鲁木齐大气污染物的主要来源。本研究为更深入了解乌鲁木齐市颗粒物污染现状提供参考,同时为确定乌鲁木齐市大气污染治理重点、制定大气污染防治规划提供依据。  相似文献   

4.
为研究北京城区PM_(2.5)中有机碳(OC)和元素碳(EC)的浓度水平、季节变化特征与主要来源,于2015年4月至2016年3月在北京西三环交通带附近采集4个季节PM_(2.5)有效样品95组,利用热光反射法测定了PM_(2.5)中OC和EC的质量浓度,并对OC/EC值、OC与EC相关性、二次有机碳(SOC)等特征及污染来源进行了分析.结果表明,采样期间PM_(2.5)平均质量浓度为(109.9±7.99)μg·m~(-3). PM_(2.5)中OC的年平均质量浓度为(13.49±4.32)μg·m~(-3),占PM_(2.5)的13.13%; EC的年平均质量浓度为(5.41±1.83)μg·m~(-3),占PM_(2.5)的5.2%.OC和EC平均浓度及OC和EC在PM_(2.5)中所占比例的季节变化特征均为冬季最高,秋季大于春季,夏季最低.4个季节PM_(2.5)中OC/EC比值均大于2.0,表明各季节存在二次有机碳(SOC)的生成,采用OC/EC最小比值法对SOC含量进行了估算,SOC年平均浓度为(6.88±1.10)μg·m~(-3),占OC含量的50.86%,冬秋季节的SOC浓度水平高于春夏季节.夏季SOC对OC的贡献率为62.22%,高于其他季节.相关性分析表明,OC与EC的相关性在春季(R2=0.9046)和秋季(R2=0.8886)高于夏季(R2=0.4472)和冬季(R2=0.6018),表明春秋两季OC与EC来源相似且相对简单.进一步对PM_(2.5)中8个碳组分质量浓度进行分析显示,北京城区大气碳质气溶胶主要来自汽油车排放和燃煤.  相似文献   

5.
黄石城区夏季大气PM_(10)/PM_(2.5)中元素特征分析   总被引:2,自引:0,他引:2  
正随着对大气颗粒物研究的深入,人们认识到颗粒物对人体健康具有很大危害,颗粒物粒径越小,对人体健康危害越大.黄石市是长江中下游典型的资源性工矿城市,大气污染比较严重.本研究旨在通过对黄石大气颗粒物以及颗粒物中化学元素污染特征的分析,为黄石市大气污染治理及探讨颗粒物对人体健康的影响提供一定的依据.  相似文献   

6.
天津城区PM_(2.5)中碳组分污染特征分析   总被引:1,自引:0,他引:1  
为探讨天津城区碳组分的季节污染特征,于2009年4月—2010年1月采集大气PM2.5样品,测定其碳组分浓度,分析有机碳(OC)和元素碳(EC)的相互关系,并探讨气象条件对碳组分浓度的影响.结果表明,天津城区PM2.5质量浓度为141.47μg·m-3,OC和EC质量浓度年均值分别为18.81μg·m-3和6.86μg·m-3,分别占PM2.5质量浓度的13.3%和4.8%,碳组分系PM2.5的重要组成部分;季节分布特征显示,秋、冬季OC和EC污染较为严重,总碳气溶胶(TCA)分别为45.74μg·m-3和46.75μg·m-3,占PM2.5质量浓度的30.1%和40.1%;采用改进的OC/EC最小比值法计算得到的二次有机碳(SOC)浓度显示,秋季和冬季SOC较高,为7.45μg·m-3和7.28μg·m-3.后向轨迹的聚类分析表明,局地气流或偏南气流控制下的PM2.5中碳组分浓度较高.  相似文献   

7.
为明确NH_4~+、 NO_3~-、SO_4~(2-)及金属等组分在水溶性提取液对发光细菌的光抑制过程中所起的作用,参照PM_(2.5)样品提取液浓度,模拟配制与3级以上PM_(2.5)样品提取液中主要组分:硫酸盐、硝酸盐、氨盐相同浓度的溶液,同时选取与PM_(2.5)可溶性提取液发光抑制率相关性较强的铅、锌,配制不同浓度级别模拟溶液,测试各单一组分对发光细菌的发光抑制率及其混合溶液对发光细菌的联合影响效应。基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价了混合体系联合影响的作用类型。结果表明,与3~6级PM_(2.5)可溶性提取液中硫酸氨、硫酸氢氨、硝酸氨、硫酸锌和硝酸铅浓度相同的模拟溶液对发光细菌的发光没有抑制作用。不同的评价方法对PM_(2.5)主要组分混合体系联合效应评价结果具有较好的一致性,硫酸氨、硝酸氨、硫酸氢氨混合溶液中,对发光细菌的光抑制均为硫酸氢氨的独立作用,硫酸锌与硝酸铅的混合体系,锌和铅对发光细菌的联合影响效应表现为协同,硫酸氨、硝酸氨、硫酸氢氨与硫酸锌、硝酸铅的多元混合体系呈现协同作用。  相似文献   

8.
为了解鞍山市秋季大气细颗粒(PM2.5)中污染元素的污染特征和来源,于2014年10月在鞍山市6个监测点位采集PM_(2.5)样品,运用富集因子和相关分析法对元素的污染特征和来源开展研究.结果表明,Fe、Ca、Zn、Mg、Na、Pb元素浓度含量之和占所有检测的12种元素浓度的98.13%,是主要的污染元素;鞍山市秋季大气细颗粒物中污染元素主要来源于钢铁冶炼、机动车尾气与燃煤的混合型污染源.  相似文献   

9.
建立了大气颗粒物(PM_(2.5)、PM_(10))中左旋葡聚糖、甘露聚糖、半乳聚糖的高效阴离子交换色谱(HPAEC)与脉冲安培检测器(PAD)联用(HPAEC-PAD)技术的快速检测法.样品采用超纯水30 min振荡提取,经浓度250 mmol·L~(-1),流速0.45 m L·min~(-1)的氢氧化钠淋洗液洗脱,45 min完成检测,该方法线性良好,相关系数达0.9999,实际样品测试加标回收率在89%—104%,精密度在1.2%—7.1%.对北京市2016年1月采暖季的大气颗粒物样品(PM_(2.5)、PM_(10))进行了检测,其中左旋葡聚糖浓度较高分别为113±100 ng·m~(-3),118±124 ng·m~(-3),计算左旋葡聚糖与甘露聚糖浓度比例关系可知,北京冬季大气颗粒物中生物质燃烧来源主要为硬木燃烧.  相似文献   

10.
选取太原市城区10个监测点2014—2016年PM_(10)和PM_(2.5)日变化数据,分析和探讨了其时空变化特征,及其与人类经济活动的同步性规律;采用小波连续变换的功率谱方法识别颗粒物周期变化特征,采用可视化主成分分析法识别不同时间尺度下颗粒物变化的影响因素。结果表明,太原市大气颗粒污染物PM_(10)和PM_(2.5)质量浓度的变化存在明显的时空差异,新兴经济发展区较传统老工业区污染严重,颗粒物污染程度在冬季较为严重。小波分析结果显示,PM_(10)和PM_(2.5)时间序列的变化周期均以4~8 d的短周期为主(P0.05),污染物的质量浓度变化与城市经济活动的周波动变化相一致;PM_(10)和PM_(2.5)质量浓度最大值出现在周波动的中间时段,最小值出现在周末。可视化PCA结果揭示,大气颗粒物PM_(10)和PM_(2.5)季节性波动均受冬季影响较强;周波动周期内均受周三影响最大;一天之内PM_(10)和PM_(2.5)质量浓度分别受夜晚和早晨影响最大,但白天颗粒物质量浓度变化是造成其日变化特征的主要因素。研究结果有利于从不同时间尺度辨析能源城市大气颗粒物污染的多变特征,有针对性地开展大气污染防控,也可为管理部门制定相关标准和规范提供科学依据。  相似文献   

11.
为科学评估PM_(2.5)对生物体综合生物效应,研究建立了利用费氏弧菌检测PM_(2.5)水溶性提取液的毒性测试方法,确立了PM_(2.5)样品提取液发光细菌毒性测试实验质量控制办法。对春节烟花爆竹燃放和沙尘污染过程的PM_(2.5)实样测试表明:烟花爆竹燃放期间的PM_(2.5)样品提取液发光抑制率值与微量金属元素等有毒有害组分浓度显著相关;沙尘污染期间的PM_(2.5)样本提取液中地壳元素浓度和发光抑制率值显著不相关。  相似文献   

12.
为探讨石家庄市冬季道路积尘中PM_2.5与PM_10的碳组分污染特征和来源,利用移动式采样法对市区不同类型铺装道路积尘进行收集,用热光碳分析仪测定样品中有机碳(OC)和元素碳(EC)的含量并分析其特征.结果表明,OC、EC在PM_2.5中的平均质量浓度为166.54 mg·g~(-1)、25.35 mg·g~(-1),在PM_10中的平均质量浓度为118.31 mg·g~(-1)、20.3 mg·g~(-1),总碳(TC)占PM_2.5中百分比为19.2%,占PM_1013.9%,表明碳组分更容易富集到细粒径颗粒物上;相关性分析表明OC、EC来源大致相同;8个碳组分中OC3的百分含量最高,OC4次之,EC3最低;主成分分析及OC、EC相关分析结果表明冬季道路积尘中的碳主要来自于机动车尾气排放和大气降尘中的燃煤成分.  相似文献   

13.
为探究不同监测位点PM_(2.5)中水溶性离子的组分差异和相关性特征,于2015年12月—2016年5月在保定地区养殖场、农田和道路3个监测位点进行PM_(2.5)样品的采集和分析,并结合主因子分析、相关性分析对其主要来源进行了分析.3个监测位点大气PM_(2.5)日均质量浓度和水溶性离子组成均存在明显区别:PM_(2.5)污染水平为道路养殖场农田,水溶性离子污染水平为养殖场道路农田;3个监测位点中,二次污染物SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)浓度及占总离子的比值均以养殖场监测位点为最高,其次分别为道路和农田;养殖场监测位点的阴阳离子电荷平衡呈碱性(1.07),而道路和农田均接近中性(1.00和0.98).此外,不同时期PM_(2.5)水溶性离子组成特征也存在明显区别:各监测位点采暖期SNA占比均高于沙尘期,其中养殖场位点SNA占比差异最大,因此采暖期二次污染的贡献高于沙尘期.尽管3个监测位点的二次污染均以固定源为主,但固定源对采暖期养殖场和农田位点的二次污染的贡献明显低于沙尘期.  相似文献   

14.
本研究采集2015年9月至2016年8月石河子市不同类型天气下大气颗粒物样品,根据气象条件进行霾与沙尘分类,使用热光碳分析仪DRI 2001A进行有机碳(organic carbon,OC)与元素碳(elemental carbon,EC)测定,采用最小比值法估算二次有机碳(second organic carbon,SOC)质量浓度,主成分分析法(principle component analysis,PCA)分析其可能来源.结果表明:中霾天气下OC和EC平均质量浓度达到20.85±5.03、2.75±0.46μg·m~(-3)(沙尘天气18.9±4.4μg·m~(-3),2.6±0.9μg·m~(-3)).二次有机碳SOC在中霾天气下质量浓度为10.62±3.94μg·m~(-3)(沙尘天气9.3±3.7μg·m~(-3)),占OC浓度67%(沙尘天气67%).霾与沙尘天气OC与EC相关系数低于非霾非沙尘天气,表明霾与沙尘天气较非霾非沙尘天气有着复杂的污染源.PCA分析表明,霾与沙尘天气下的碳气溶胶的主要排放源为机动车尾气,固定燃煤源和道路扬尘.本项研究分析了石河子市霾和沙尘天气下的碳气溶胶分布,有望为中国西部城市的霾和沙尘天气治理提供依据.  相似文献   

15.
为研究国家大气背景点颗粒物质量浓度与水溶性离子组成特征,于2013年2月、7月、9月、12月分别对4个国家大气背景点进行了PM2.5及PM10的采样,通过超声萃取-IC法测定了样品中的9种水溶性离子(F-、Cl-、NO-3、SO2-4、Na+、NH+4、K+、Mg2+、Ca2+)质量浓度,结果表明:(1)可吸入颗粒物浓度水平一、二季度重于三、四季度,PM2.5、PM10年均值分别为17μg·m-3、32μg·m-3,与其他主要国家和地区背景区域浓度相当,背景点大气状况良好;(2)PM2.5中水溶性离子比重全年波动不大,为35.5%—42.2%,浓度排序为SO2-4、NH+4、NO-3Ca2+、Cl-、K+、Na+F-、Mg2+,第一季度PM10中Ca2+浓度显著升高,控制风沙尘将有效降低PM10的浓度;PM2.5及PM10中的9种水溶性离子在不同季节的浓度分布规律与颗粒物浓度类似,一季度较高,三、四季度较低;(3)二次离子是背景点区域的主要水溶性离子,浓度值与其他主要国家和地区相当.NO-3、SO2-4的物质的量浓度与NH+4存在显著相关性,相关系数r为0.7539,斜率小于1,水溶性离子中酸性离子的量比铵根离子略占优势,对气溶胶酸度产生重要贡献.  相似文献   

16.
广州市灰霾期间大气颗粒物中有机碳和元素碳的粒径分布   总被引:6,自引:0,他引:6  
使用冲击式采样器(MOUDI)采集广州市灰霾形成过程的大气颗粒物.分析了有机碳(OC)和元素碳(EC).结果表明,灰霾期间大气主要消光部分积聚态颗粒物及其中的OC和EC,在PM10(可吸入颗粒物)中所占的比例及其绝对浓度要远高于正常天气.正常天气OC和EC呈双模态分布,严重灰霾天气EC的粒径分布呈单一模态分布,OC的粒径分布呈双模态分布,峰值都向大粒径方向偏移.结果显示,大气颗粒物、OC和EC在积聚态的大幅度增长是形成灰霾天气的重要原因.  相似文献   

17.
本文基于国家空气质量自动监测位点2015年3月到2016年2月全年的逐时监测数据,对山西省11个地级市PM_(2.5)的污染状况与时空分布进行了详细研究.结果表明,山西省11个地级城市PM_(2.5)年均浓度均超过了国家年均浓度的二级标准限值,其中,长治和运城污染最为严重,超标率均高达27.51%.PM_(2.5)月均浓度变化特征分析发现,各地区PM_(2.5)污染高峰主要出现在冬季,9个城市在夏季出现另一小高峰,太原在春季出现另一小高峰.PM_(2.5)/PM_(10)月均浓度变化特征分析发现,太原、大同、晋城、朔州、晋中和忻州等6个城市PM_(2.5)/PM_(10)的值从春季到冬季逐渐增长,临汾和运城该比值波动于50%—70%之间,阳泉和吕梁PM_(2.5)/PM_(10)的值在7月和11月出现两次高峰,长治则在7月和1月出现两次高峰,提示不同地区可能受到不同污染源的影响.PM_(2.5)日变化规律总体较为一致,呈明显的双峰分布,其特征是中午和午夜高,凌晨和下午低.不同季节PM_(2.5)的空间分布虽有很大差异,但总体上南部城市高于北部城市.局部自相关分析发现,山西省PM_(2.5)污染的热点区域主要集中在运城.  相似文献   

18.
为了研究西安市冬季重污染天PM2.5及其中碳气溶胶的变化特征,在2013年1月1日至2013年2月28日大气污染严重的天气进行24 h连续的PM2.5样品采集,再通过Model-4型全自动半连续式在线光/热法大气气溶胶OC/EC分析仪分析得出OC、EC的连续质量浓度值。结果表明,西安市PM2.5质量浓度冬季重污染天日循环变化规律明显,均大致呈现双峰模式,白天和夜间各有一个高峰。2月份的每个PM2.5质量浓度值高峰和低峰的出现均比1月份晚2~3 h,夜晚的高峰值比1月份低,PM2.5质量浓度比1月份上升得慢,下降得快。气象条件能对PM2.5质量浓度产生较强的影响。2月份PM2.5质量浓度值整体比1月份低,但在2月10日出现突越(499μg·m-3),这与春节假期人为活动变化有关。OC/PM2.5、EC/PM2.5、TCA/PM2.5日变化幅度都较小,这说明OC、EC、TCA的来源比较一致;OC/EC值的平均值为6.63,表明西安冬季重污染期PM2.5中的一次来源主要为燃煤排放。PM2.5、OC、EC、TCA和OC/EC的值较2010年都有明显的上升,但OC/PM2.5、EC/PM2.5、TCA/PM2.5的值却是下降的,这说明近年来PM2.5及碳气溶胶的控制措施效果不明显,碳气溶胶二次来源增加,PM2.5的排放来源变得更加复杂。OC和TCA日循环变化呈现出明显的双峰特征;EC的变化趋势不明显。一天中OC/EC值多数时候处于较高水平,且受早晚车流量高峰的影响不明显,说明西安冬季重污染期间碳气溶胶受光化学反应转化的二次来源影响比较大。OC、EC的线性相关性比较好,且白天相对夜晚好,说明西安市冬季夜间燃煤采暖增加了碳气溶胶来源的复杂性。  相似文献   

19.
近年来,大气环境质量的不断恶化受到了人们广泛的关注。利用长春市的食品厂、客车厂、邮电学院、儿童公园、净月潭以及甩湾子等6个自动监测中心提供的2011年PM10、SO2与NO2小时质量浓度的连续监测数据,分析了长春市PM10质量浓度(MPM)的时空分布特征、不同污染物之间的相关性及其形成的原因。结果表明:从空间分布上看,6个采样点的MPM从高到低依次为食品厂儿童公园邮电学院客车厂净月潭甩湾子,其中除食品厂与儿童公园外均符合《环境空气质量标准》GB3095-1996的二级标准。从时间分布上看,绝大多数监测点位的冬季MPM是最高的,春季次之,主要是因为冬季采暖与春季沙尘天气,而夏季的MPM最低,主要是湿沉降作用所致。MPM逐日变化呈现出双峰双谷型分布,第一个峰值出现在早上7:00左右,其中最大值出现在5月份的早7:00左右,达到了0.223 mg·m-3,第1个峰值过后呈下降趋势,下午出现质量浓度低谷,其中最小值出现在11月份15:00左右,为0.036 mg·m-3,直到傍晚时缓慢回升,22:00左右达到第2个峰值。通过统计分析不同污染物之间的相关系数,得出PM10与NO2质量浓度的相关性显著,且较稳定,其原因可能是常年排放的机动车尾气尘影响较大,而PM10与SO2质量浓度的相关性不太稳定,这可能是冬季采暖排放的燃煤尘所致。  相似文献   

20.
贵阳市秋、冬季大气PM_(2.5)中重金属元素的污染特征   总被引:4,自引:0,他引:4  
正贵阳市是我国西部地区的重要省会城市,地处山间盆地,多微风、静风的气候条件,对大气污染物浓度的变化比较敏感.本研究按功能区选取贵阳市10个代表性点位,以PM2.5中重金属为研究对象,分秋、冬两个季节采样,深入讨论了大气PM2.5中重金属的浓度水平、污染特征以及可能的污染来源,以期为贵阳市大气PM2.5中重金属污染防治提供科学依据.1实验材料与方法设置10个采样点,分别为云岩师大(文教区、交通干线)、云岩区检察院(行政区、交通干线)、合群路(商业综合区)、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号