首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
森林生态系统是陆地生态系统中最为重要的类型之一,土壤微生物是森林生态系统的主要调节者。随着森林演替的正向进行,地上植物类型和多样性的改变会造成土壤微生物群落结构组成的差别。为了深入探究长白山森林不同演替阶段的土壤生物学特性,为长白山地区森林资源的可持续发展提供理论数据,本研究选取长白山年龄为30年、70年、300年的森林样地,分析了长白山森林不同演替阶段土壤理化性质和微生物群落水平上的演变规律。结果表明,不同演替阶段土壤微生物群落结构存在差异,70年与30年和300年相比具有明显的变化,70年的土壤微生物总PLFAs含量以及多样性均显著高于300年,且土壤微生物群落结构受到土壤pH和土壤养分含量的显著影响。  相似文献   

2.
植被恢复的生态效应研究进展   总被引:1,自引:0,他引:1  
胡婵娟  郭雷 《生态环境》2012,(9):1640-1646
植被在水土保持、水源涵养及生态系统的固碳过程中起着重要的作用。植被恢复是指运用生态学原理,通过保护现有植被、封山育林或营造人工林、灌、草植被,修复或重建被毁坏或被破坏的森林和其他自然生态系统,恢复其生物多样性及其生态系统功能。目前,植被的自然及人工恢复是改善脆弱生态系统及退化生态系统生态环境现状最有效的措施。植被在恢复过程中对地上植被生态系统,物种多样性的恢复有着重要影响,同时通过凋落物及根系的输入,可以有效改善地下生态系统,增加土壤的养分含量、改善土壤的物理结构、增加土壤生物的生物量及活性。文章以地上及地下生态系统为出发点,综述了植被恢复过程中自然及人工恢复过程中不同的植被类型、不同的恢复时间下植物物种组成和多样性、土壤理化性质及土壤微生物群落的变化。植被的自然及人工恢复在一定程度上均能增加植物物种的多样性,随着恢复年限的增加物种的组成发生改变且多样性呈增加趋势,但一些特殊环境下不当的人工恢复可造成植被演替向退化方向发展,降低生物多样性。不同的植被类型由于其生长方式的不同对土壤理化性质和土壤微生物的影响存在差异,随着恢复年限的增长,土壤理化指标及微生物学指标呈现先增加而后趋于平稳的状态。针对已有的研究进展,提出在未来的研究过程中,一方面应该增加更多的对比研究,对不同环境下,不同的恢复物种,不同的恢复方式进行更深入地探讨;另外一方面应增加不同尺度的研究,现有的研究多集中在样地尺度,未来应在更大尺度上进行分析;再者,地上及地下生态系统之间的相互关系及影响机理一直是土壤学科研究的热点,植被恢复过程中应增加更多该方面的机理研究。  相似文献   

3.
曹宏杰  倪红伟 《生态环境》2013,(11):1846-1852
土壤有机碳是陆地碳库的重要组成部分,其积累和分解的变化直接影响全球的碳平衡。据估计,全球土壤(表层1m)有机碳积累总量相当于大气中碳总量的2~3倍。土壤是温室气体的源或汇,土壤碳库的变化将影响大气C02的浓度,因此,土壤碳库对人类活动的响应也是全球碳循环和全球变化研究的热点。在全球变化的大背景下,大气CO2升高导致植被生态系统碳平衡的改变进而对土壤碳循环产生影响。总结了陆地生态系统碳循环对大气C02浓度升高响应的主要生物学机制及过程,简述了大气C02浓度升高对影响土壤碳输入和输出的各因素的研究进展,并指出未来研究的主要方向。在大气C02浓度升高条件下,陆地生态系统碳循环的变化主要反映在以下几个方面:1)不同类型植物群落的净初级生产力(NPP)显著增加,但湿地植物的净初级生产力也有可能降低;2)光合产物向根系分配的数量增加,地上/地下生物量降低,根系形态发生变化,根系周转速率和根系分泌等过程的碳流量提高;3)植物含氮量降低,C/N提高,次生代谢产物增加,微生物生长受到抑制,植物残体分解速率降低;4)土壤呼吸速率显著增加,提高幅度受植物类型与土壤状况的影响;5)进入土壤的植物残体及分泌物的数量和性质影响土壤酶的活性,脱氢酶和转化酶活性增加,酚氧化酶和纤维素酶受植物类型与环境条件的影响;6)土壤中真菌的数量的增加幅度要高于细菌;7)CH4释放量增加,在植物的生长期表现更为明显。由于陆地生态系统碳循环的复杂性,研究结果仍有很大的不确定性。大气C02浓度升高与全球变化的其它表现间的交互作用将是今后研究的重点,同时由于土壤碳循环是一个由微生物介导的生物地球化学循环过程,因此,加强陆地生态系统碳循环的微生物机制研究也将为全面理解碳循环的过程提供更加准确的研究理论基础。  相似文献   

4.
近地层O3污染对陆地生态系统的影响   总被引:2,自引:0,他引:2  
随着全球气候变化对生态环境的影响日益增加,近地层臭氧(O3)污染的环境生态效应备受人们关注.现有研究表明,陆地生态系统的温室气体NOx和CH4释放、矿质能源消耗和机动车辆尾气排放量的增加将加剧近地层O3污染.O3污染通过降低植物叶片气孔导度、光合速率和净同化作用,改变同化物的分配,进而抑制植物生长和加速植物老化,导致作物和林木减产.O3污染导致植物-土壤系统碳积累和周定降低势必影响未来全球碳动力学和碳预算,而植物和根系生长受到抑制则不利于土壤养分、水分的吸收进而影响植物-土壤系统养分循环,但目前报导极少,尚无法准确判断对全球碳和养分循环的影响,亟待深入研究.由于环境因素间具有互作效应,目前模拟研究过多集中O3与CO2增加对陆地生态系统的复合效应方面,而与其它环境因子(如O3与NO、SO2、水分、温度等)的复合效应研究偏少,不利于在全球气候变化背景下深入了解与预测O3污染对陆地生态系统的影响程度与趋势.基于研究现状,未来应加强:(1)地表O3监测网络建设和监测,结合田间试验和建模加强草地、森林和农田生态系统对O3污染的响应研究;(2)长期定位研究,侧重陆地生态系统对O3污染连合其它温室气体、温度增加等模拟未来气候情景下的环境响应研究;(3)O3污染下土壤.植物系统碳循环和固定研究;(4)O3污染条件下优势植物和农作物在不同时空条件下的土壤.植物系统养分利用研究;以期为判断和预测全球气候变化背景下陆地生态系统对近地层O3污染加剧的响应程度与趋势提供数据资料和科学依据.  相似文献   

5.
陆地碳平衡对大气CO_2升高的响应及其机制   总被引:1,自引:0,他引:1  
研究陆地碳平衡对大气CO2浓度升高的响应,能为揭示碳失汇之迷提供有力证据,为制定缓解全球变化的合理政策措施提供理论依据.综述了陆地碳平衡对全球大气CO2升高的响应及其町能的机制,由于陆地生态系统的复杂性,以及不同的研究在具体的对象、时间、地点、方法和角度的差异,目前有关陆地碳平衡对全球大气CO2升高的响应还存在很大的分歧.陆地碳库主要可分为植被碳库和土壤碳库,大气CO2浓度升高主要是通过影响光合作用、土壤养分、水分供应、光照条件、群落组成、光合产物分配等方式影响植被碳库;而土壤碳库的响应机理主要包括光合产物向土壤的输入量、脱落物质量、养分循环、光合产物分配、根系周转期、微生物活性等的响应.关于陆地碳平衡对全球大气CO2升高的响应今后应该主要集中在:(1)不同生态系统影响全球植被碳库变化的主导因子;(2)大气CO2浓度升高与其他环境因子的互作效应;(3)大气CO2浓度升高对植物光合作用的促进效应与光合作用适应性间的关系;(4)地上碳库与地下碳库间的相关性,及其对大气CO2浓度升高的分别响应;(5)克服目前实验方法存在的局限性.  相似文献   

6.
利用中国臭氧FACE(Free-air O3concentration enrichment,开放式空气臭氧浓度增高)试验平台,通过测定麦季土壤水溶性有机碳含量、土壤呼吸强度和BIOLOG指标,研究了近地层臭氧浓度升高50%条件下(~70 nmol mol-1),麦田土壤微生物功能多样性的响应.结果发现,臭氧浓度升高下麦田土壤水溶性有机碳含量提高,土壤微呼吸强度增加,平均吸光值显著高于对照(P<0.05).多样性指数结果显示,臭氧浓度升高对麦田土壤微生物丰富度和优势度指数没有显著影响,但是臭氧处理下均一度指数显著高于对照(P<0.05);主成分分析显示,相对于其它碳源,臭氧浓度升高对麦田土壤微生物的糖类物质利用能力的影响最大.研究揭示了1.5倍的近地层臭氧浓度增强了麦田土壤微生物碳源利用能力,特别是非优势微生物.  相似文献   

7.
农田土壤呼吸对大气CO2浓度升高的响应   总被引:3,自引:1,他引:2  
大气CO2浓度急剧升高引起的全球气候变暖是人们关注的环境问题之一.随着气候变化对全球生态环境的影响日益增大,全球碳循环研究已经成为各国科学家研究的热点之一.模拟大气CO2浓度升高试验技术先后经历了人工气候室、开顶式气室、FACE技术(Free Air carbon dioxjde eariclament)阶段,FACE技术因其无限接近自然条件而成为研究大气CO2浓度增加对整个生态系统影响的最理想试验平台.土壤呼吸是陆地生态系统碳循环的重要环节,农田生态系统是陆地生态系统的重要组成.研究农田生态系统的土壤呼吸对大气CO2浓度增加的响应是预测和评价农田系统乃至整个陆地生态系统土壤碳周转和碳收支的重要前提与基础.文章根据现有研究成果.阐述了模拟大气CO2浓度升高的试验技术,比较了农田土壤呼吸的测定方法,总结了以FACE研究成果为主的高CO2浓度条件下农田土壤呼吸、不同地下来源贡献及环境因子影响,提出了进一步研究的方向,以期为全球气候变化背景下的农田土壤呼吸和碳固定及全球碳循环研究提供帮助.  相似文献   

8.
病毒广泛存在于不同生态系统,影响微生物群落组成、丰度、活性及功能,在生物地球化学元素循环过程中发挥着重要作用。病毒在各生态系统中的群落组成、功能及进化演替是目前生态学的研究热点。然而,目前对病毒生态分布的研究主要集中于海洋等水生生态系统,对陆地生态系统中病毒的研究仍十分缺乏,尤其是RNA病毒。基于此,该文系统分析了土壤病毒的研究现状,探讨了病毒参与土壤碳氮循环的相关机制。研究表明,人为干扰将影响土壤病毒的分布:藻状DNA病毒科(Phycodnaviridae)主要存在自然土壤,而农田及城市土壤中病毒组成主要包括长尾噬菌体科(Siphoviridae)、肌尾噬菌体科(Myoviridae)、短尾噬菌体科(Podoviridae)、微小噬菌体科(Microviridae)和丝杆病毒科(Inoviridae);相对于农田土壤,森林土壤中的病毒具有更高多样性和丰度。此外,痘病毒科(Poxviridae)和疱疹病毒科(Herpesviridae)等多种与人类疾病相关的病毒在土壤中被检出,且城市绿地中的疱疹病毒科的丰度显著高于森林和农田土壤,预示着土壤病毒对人群健康存在一定威胁,且人为活动将增加其...  相似文献   

9.
全球气候变化对全球生态系统的结构、功能和过程产生了重要影响,成为各国政府、社会公众以及科学界共同关心的焦点问题。陆地生态系统碳循环又是当前气候变化和区域可持续发展研究的核心内容之一,影响到经济和社会发展的各个方面。因此,开展陆地生态系统碳储量和碳通量的研究仍将是气候变化研究中的重点内容。总结了近年来国内森林、土壤、草地、农田四种陆地生态系统在碳储量、碳通量方面取得的研究成果和不足:随着遥感、GIS及模型的发展和应用,森林、草地生态系统碳储量的研究精度和范围要高于农田和土壤,而农田和土壤生态系统碳储量的研究多基于典型性样地和大量实验数据,结果受制于样点布设和采样密度;目前,土壤生态系统碳储量结果多基于上世纪80年代全国二次土壤普查数据计算所得,且总有机碳库的估算存在较大差异,土壤有机碳的组分研究中易氧化有机碳库研究滞后于总有机碳,迫切需要对我国现有土壤有机碳进行研究;农田生态系统受人类活动干扰强烈,从一个或几个站点到全国尺度都有对农田土壤有机碳贮量的研究成果,与国外相比,我国试验田的设置时间短,资料积累较少,更多侧重不同施肥方式下农作物产量和农田合理的施肥培肥模式研究,农田土壤有机碳含量关系我国农业生产和粮食安全,对农田土壤固碳机理的研究仍将是今后关注的焦点。各生态系统碳通量的监测取得了一定成果,近年来涡度相关系统在森林、土壤、草地、农田生态系统中得到了广泛的应用。并从气候、人类活动两个因素分析了其对生态系统碳储量、碳通量的影响。针对目前存在的问题,进一步指出了目前国内不同生态系统中碳循环在现状研究、有机碳变化机制、模型建立及气候变化和人类活动影响下的碳库时空格局方面得到加强。  相似文献   

10.
林木根系衰老研究方法与机制   总被引:2,自引:1,他引:2  
张建锋  周金星 《生态环境》2006,15(2):405-410
根系衰老研究方法主要有根窗直接观测和挖根取样间接观测。在整株水平上,树木同化碳的能力,碳在不同器官间的分配,尤其是在地上部分和地下部分间的分配比例,对根的萌生和衰老起着重要作用;地上部分的生长过程和健康状况也对根系的生长和寿命有很大影响;当树木的生长环境受到某种胁迫时,树木的抵抗力下降,容易招致病原菌的危害,造成根系衰老和死亡。在生态系统水平上,干旱洪涝、干扰等胁迫和树木一土壤间的养分循环都会引起树木生长环境的改变,对根系的衰老过程发生作用;季节变化使树木的地上部分和地下部分的生理活动处于不同的旺盛期,从而使碳的分配方式有些改变,影响到根系的生长;土壤中养分的存在形式,某些离子的浓度也直接影响到根的寿命;病原菌对根系的危害与土壤中养分含量变化有关。所以,衰老过程受环境条件的影响,伴随着代谢,RNA和蛋白质合成速率的下降和(或)膜与细胞器结构的改变。  相似文献   

11.
森林土壤储存着全球陆地生态系统大约45%的碳,在维持全球碳平衡方面具有重要的作用。不断加剧的全球氮沉降对森林生态系统碳循环和碳吸存产生了深刻的影响,进而改变了森林生态系统的生产力和生物量积累。本文以欧洲和北美温带地区开展的有关氮沉降对森林生态系统影响的研究为基础,提炼出最可能决定加氮影响碳输入、输出效应方向和大小的因素:凋落物分解、细根周转、外生菌根真菌、土壤呼吸及可溶性有机碳淋失,并探讨了森林生态系统碳动态对氮沉降响应的不确定性。陆地生态系统碳氮循环密切相关,由于氮循环的复杂性,尽管以往碳循环研究都考虑了氮对碳循环的限制作用,但在碳氮循环耦合机理方面的研究还比较少见。在未来研究中,应通过探寻森林土壤碳氮相互作用特征,及土壤微生物、土壤酶等与土壤碳氮过程的互动机制,来增进氮沉降对森林碳储量和碳通量的理解。  相似文献   

12.
在全球大气二氧化碳浓度上升的背景下,陆地生态系统碳循环及碳汇功能研究得到了广泛的关注,日益成为今后的政治和外交的重大议题之一.净生态系统生产力(net ecosystem production, NEP)是生态系统光合固定的碳与生态系统呼吸损失的碳之间的差值;或者为生态系统净的碳积累速率.NEP 的研究整合生态系统地上和地下部分,把生态系统碳循环的影响因子有机地联系了起来.当NEP为正值时,说明生态系统为碳汇,NEP为负值则表明生态系统为碳源.随着植物和土壤相互联系及其对生态系统过程研究的深入,NEP已经成为生态系统碳循环研究的核心概念之一.以森林NEP为出发点,综述了国内外的最近的 NEP 研究进展,分析了 NEP 研究的科学意义;探讨了植物群落组成/生物多样性、土壤微生物群落、大型/土壤动物和人为的管理或干扰等生物因子对NEP的影响.根据综述研究提出未来研究应在:(1)土壤生物过程、土壤食物网及其与地上部分植物/动物相互作用对NEP的影响;(2)自然林生物多样性的竞争/共存机制与生态系统碳吸存稳定性;(3)人工林固碳潜力和不同植物功能群(灌草层)对生态系统碳动态影响等方面加强,以期为全面认识生物因子对森林生态系统系统固碳现状、机制和潜力提供理论基础.  相似文献   

13.
土壤是陆地生态系统碳储存的重要场所,其养分变化与全球陆地碳循环密切相关。土壤养分是植物生长的重要保证,而土壤各养分之间是紧密联系的。理解土壤养分变化与环境因素的关系有助于更好地了解陆地生态系统碳、氮、磷循环。本研究以东北北部自东向西沿降水量梯度变化纬度带上的温带森林与干草地生态系统为研究对象,利用气象数据和野外土壤实测数据,分析了纬度带上不同植被类型土壤的有机碳、全氮、碳氮比、速效磷的空间分布格局及其与环境因子(年降水量、年均温、土壤pH值)的关系。研究纬度带上降水量自东向西逐渐减少,植被类型从温带森林过渡到干草原,与降水量和植被类型对应,植被生物量也自东向西呈现从高到低的分布梯度。研究结果表明:从整个研究带上来说,降水量与土壤pH值是土壤养分空间分布的决定因素,沿纬度带从东到西,随着降水量逐渐减少,土壤pH值逐渐增加,而土壤有机碳、全氮、碳氮比、速效磷含量逐渐减少。但如果将森林和草地分别讨论则发现,森林和草地生态系统的土壤养分环境控制因素有较大差别。对于草地生态系统而言,降水量和土壤pH值仍然是其土壤养分含量的控制因子,但森林生态系统由于所处区域降水量充足,降水量不再是其土壤养分的控制因子,降水量只与森林土壤碳氮比呈显著正相关。研究还发现森林土壤的速效磷含量与温度呈正相关,与土壤pH值呈负相关,说明温度对东北北部温带森林的土壤养分含量具有一定的控制作用。  相似文献   

14.
土壤微生物是土壤有机质和养分循环转化的动力,其生长、周转和碳利用效率(CUE)表征了微生物数量的变化、对土壤碳库的更新速度以及微生物本身的新陈代谢强度和生命活性的强弱.氮、磷沉降是全球变化的重要趋势,研究土壤微生物对氮磷添加模拟氮沉降的响应,成为近年土壤生态学的研究热点,但CUE的研究方法、氮磷添加对土壤微生物生物量和生理代谢活性的影响还没有统一结论,其作用机理还停留在理论假设阶段,尚待有力论证.本文比较5种测量土壤CUE的原理和各自的优缺点,厘清生长、周转和CUE三者之间的联系和区别,分析影响土壤微生物CUE的生物因素和非生物因素.从土壤微生物生理代谢和群落结构、土壤理化性质以及地上植物3个角度论述土壤微生物响应氮磷添加的过程和机制.氮添加对土壤微生物的生长和代谢的不利影响在大多数生态系统得到了验证,而磷添加对微生物的影响因生态系统的不同而差异较大,因为磷对微生物的作用强烈依赖于碳的有效性.未来,土壤微生物对氮磷添加响应的研究应该聚焦在估计方法的精准探索、氮磷(多养分元素)互作的影响、地上地下耦合、生物因素与非生物因素相互作用机制,以及整合长时间与大空间尺度.(图3表1参70)  相似文献   

15.
丛枝菌根(arbuscular mycorrhizal, AM)真菌是生态系统地上地下部的重要连接体,对其群落结构特征的研究有助于菌种资源的发掘和生态系统的可持续发展.人类生产生活活动对全球环境带来了一系列的改变,如二氧化碳和臭氧浓度升高、氮沉降、增温及降水减少/增多等,全球环境变化对AM真菌群落结构的影响也引起了广泛关注.针对二氧化碳和臭氧浓度升高、增温、氮沉降和降水减少/增多等全球环境变化因子,总结其对AM真菌群落结构影响的国内外研究进展,探讨全球环境变化对AM真菌群落的可能作用途径.已有模拟全球环境变化实验研究主要集中于北半球的草原、农田和森林系统.大多研究发现二氧化碳和臭氧浓度升高未对AM真菌多样性产生不利影响,但使AM真菌群落结构显著分异.氮沉降和增温对AM真菌多样性的影响表现为降低、无显著影响和增加等多种情况,对AM真菌群落结构的影响也表现为未显著和显著分异,主要与模拟实验处理方式、增加幅度、土壤养分水平和生态系统类型等因素有关.降水减少未显著影响AM真菌群落结构和多样性,而降水增加使AM真菌群落结构发生显著分异.这些研究主要注重AM真菌群落结构和多样性如何改变等生态现象而潜在机理探索以及热带和南半球不同生态系统下的研究尚不足.另外,鉴于全球变化因子间的关联性,复合因子对AM真菌群落结构的影响值得重视.(图1表4参113)  相似文献   

16.
草本竞争在森林更新早期具有显著的生态效应,然而对其发生机理的理论认知仍相当有限.以白桦和五角枫为试验对象进行盆栽控制试验,设置4种竞争方式(无竞争、全竞争、地上竞争、地下竞争)、4种土壤养分梯度(0、8、16、32g/m2)及2种养分分布水平(均、异质),各个处理8次重复,通过测量生物量及苗高、地径、叶片表面积、根系表面积和根长等形态指标,基于线性模型实现草本竞争效应的线性分解,精确衡量各竞争效应组分贡献率的相对重要性,进而基于结构方程模型揭示不同土壤养分状况下草本竞争对幼苗高生长的作用机理.结果显示:草本竞争对不同演替阶段幼苗生长存在显著的抑制作用(P <0.05).地上、地下竞争及二者交互作用贡献率分别处于40%-60%、20%-30%、20%-30%之间.不同土壤养分浓度及养分分布对其贡献率均有显著影响.草本植物分别主要通过影响白桦幼苗的养分吸收能力(0.62)和五角枫幼苗的光合能力(0.74)进而影响其高生长.在高养分浓度或异质土壤养分分布状况下,土壤养分吸收能力较光合能力更为重要.两种不同生态学习性树种的草本竞争效应存在明显差异(P <0.05).本研究表明草本竞...  相似文献   

17.
三江源区不同建植年限人工草地土壤微生物群落结构特征   总被引:1,自引:0,他引:1  
近年来,对退化生态系统恢复的研究逐渐由地上向地下部分转移,地下部分特别是土壤微生物群落对土壤的恢复机理和过程已倍受关注.运用常规实验室分析法和磷脂脂肪酸法,研究三江源区不同建植年限人工草地土壤养分和微生物群落结构及其分布特征.结果显示:土壤总磷脂脂肪酸(总PLFAs)、真菌PLFAs(F PLFAs)、细菌PLFAs(B PLFAs)、革兰氏阳性菌PLFAs(G+PLFAs)、革兰氏阴性菌PLFAs(G-PLFAs)含量与PLFA类型随建植年限的增加呈先降低后升高的变化趋势,随土层深度的增加而降低.土壤全量、速效养分含量均随建植年限的增加呈现同样的变化规律.主成分分析表明,在0-10 cm、10-20 cm土层中,4年和16年人工草地土壤微生物群落PLFA类型丰富多样,群落结构更加复杂稳定,而7年和9年的土壤微生物群落结构较为单一.相关分析表明,总PLFAs、B PLFAs、F PLFA s、G+PLFAs和G-PLFAs含量与土壤全量和速效养分含量(除速效氮、速效磷)均呈极显著或显著正相关(P<0.01;P<0.05).综上,在合理放牧条件下,人工草地的建植有利于土壤微生物生物量的提高和群落结构的改变.利用微生物PLFA含量和类型的多样性作为监测土壤环境的指标,能及时有效地判别土壤养分的变化情况,有利于及时管理人工草地.  相似文献   

18.
凋落物分解是森林生态系统物质循环和能量流动的核心环节。干扰能够影响凋落物分解速率和养分循环,进而改变森林生态系统的结构、功能及过程。文章通过整理干扰对森林凋落物分解影响的研究成果,从凋落物质与量、微环境及分解者类群等方面阐述了干扰对森林凋落物分解的影响机制,并分析现有研究的不足,为未来合理经营森林,增加适度干扰提供一定的理论依据。现有的研究表明,间伐等干扰会显著减少森林凋落物产量,改变凋落物化学特性并促进凋落物分解;干扰对凋落物分解环境的影响主要表现于对温湿度的调节,间伐能增加林内贯穿雨量,从而对湿度有显著提升作用;干扰对土壤动物的短期负面影响较为显著,而对微生物种类和数量则显著提高,从而有效地促进凋落物的分解,这主要归因于干扰改变了微环境与凋落物底物的质量;干扰通过改变土壤条件进而影响相关微生物分解酶的活性,酶活性越高,分解越迅速。干扰对林分结构、分解环境等影响因素的改变与凋落物分解之间的关系错综复杂,其中的机制与机理仍有待明晰;不同方式及程度干扰对森林恢复过程中凋落物分解模式的研究尚有待加深;建立干扰梯度以研究森林地上部分对地下部分的调控及反馈应受到重视;如何进行合理的森林经营以促进凋落物分解也需进一步研究。  相似文献   

19.
根系及其主要影响因子在森林演替过程中的变化   总被引:9,自引:2,他引:9  
郝艳茹  彭少麟 《生态环境》2005,14(5):762-767
统计分析了国内外主要森林生态系统演替过程中根系生物量及其分布的变化,并探讨了相关的影响因子及其动态。结果发现,根系生物量随林龄和演替的进行而增加,演替群落的根冠比呈减小趋势。一般来说,根系的垂直分布是较浅的,尤其是细根。根系分布范围与地下部生态位的变化能够反映其可以利用的资源范围以及它在演替过程中的作用和地位。在森林演替初期,群落根系分布较浅,可塑性强,且水平根系发达;演替中期的根系呈镶嵌分布,分布范围加深,根系密度增加;演替后期的根系分布趋于稳定,地下生态位分离程度加剧,根系结构具有相对明显的分层。在演替过程中,根系的这种分布特征受自身条件和生态因子的影响,文章论证了这些影响因子本身在演替过程中也是动态变化的,进一步说明了根系分布动态规律存在的必然性。在演替过程中,根系生物量及其分布动态的研究,可以为森林群落动态学提供新的理论基础,是未来地下生态学研究的焦点之一。最后,分析了根系研究中亟待解决的问题和今后的发展重点,提出新的展望。  相似文献   

20.
土壤微生物是维持森林生态系统平衡与土壤养分的一个重要因素。雪岭云杉林是天山重要的生态屏障和珍贵生物资源,其生态系统的固碳能力持续提升。研究雪岭云杉森林土壤微生物群落特征及微生物与土壤养分之间的互作关系,对维持雪岭云杉森林生态系统质量,促进雪岭云杉森林生态系统可持续发展至关重要。以天山北坡雪岭云杉林表层土为研究对象,利用宏基因组技术,探究天山北坡雪岭云杉林土壤微生物群落组成和多样性及其影响因素。结果表明,天山北坡雪岭云杉林土壤微生物群落特征表现为细菌相对丰度82.5%,真菌1.3%,古菌0.5%,其他15.7%。细菌Alpha多样性在中东部和西部之间有显著性差异;古菌Beta多样性在中部与西部存在显著差异,且中部和东部之间极显著;细菌Beta多样性在3个区域之间均有显著差异,其中西部与东部极显著;真菌Beta多样性仅中部与东部存在极显著差异。古菌多样性主要受有机碳、总氮、pH和土壤湿度的影响;细菌多样性主要受氮素、pH、年均降水量和年均摄氏温度的影响;真菌群落多样性主要受微生物碳和年均摄氏温度的影响。综上说明,土壤因素和水热条件在天山北坡雪岭云杉林土壤微生物群落分布中起主要控制作用,其中...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号