首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems.  相似文献   

2.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   

3.
Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior.  相似文献   

4.
Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.  相似文献   

5.
The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment.  相似文献   

6.
The vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in environmental conditions affecting the vadose zone. A mathematical model to simulate the water flow, and the fate and transport of recalcitrant contaminants was developed, which could be applied to various bioremediation methods such as phytoremediation and natural attenuation in the vadose zone. Two-phase flow equations and heat flux models were used to develop the model. Surface energy, balance equations were used to estimate soil surface temperature, and root growth and root distribution models were incorporated to represent the special contribution of plant mots in the vegetated soils. Interactions between the roots and environmental conditions such as temperature and water content were treated by incorporating a feedback mechanism that made allowance for the effects of water and temperature stresses on root distribution and water uptake by roots. In conducting the modeling study, Johnson grass and unplanted soil were simulated to compare the effect of root water uptake on soil water content. After the numerical experiments were conducted to investigate model behavior, the proposed model was applied to estimate actual water flow and heat flow in field lysimeter experiments over a 1-year period. Root growth and distribution for Johnson grass and rye grass were simulated to compare the warm season grass to the cold season grass. A significant agreement was observed between the simulations and measured data.  相似文献   

7.
Luo Q  Wang H  Zhang X  Fan X  Qian Y 《Chemosphere》2006,64(3):415-422
In situ bioremediation is a safe and cost-effective technology for the cleanup of contaminated sites, but its remediation rate is usually very slow. This study attempted to accelerate the process of bioremediation by employing non-uniform electrokinetic transport processes to mix organic pollutants and degrading bacteria in soils under in situ conditions (namely, in situ bioelectrokinetic remediation) by use of an electrode matrix and a rotational operation mode. A bench-scale non-uniform electrokinetic system with periodic polarity-reversal was developed for this purpose, and tested by using a sandy loam spiked with phenol as a model organic pollutant. The results demonstrated that non-uniform electrokinetic processes could enhance the in situ biodegradation of phenol in the soil, the efficiency of which depended upon the operational mode of the electric field. Compared with the unidirectional operation and the bidirectional operation, the rotational operation could effectively stimulate the biodegradation of phenol in the soil if adopting appropriate time intervals of polarity-reversal and electrode matrixes. A reversal interval of 3.0 h and a square-shaped electrode matrix with four electrode couples appeared appropriate for the in situ biodegradation of phenol, at which a maximum phenol removal of 58% was achieved in 10d and the bioremediation rate was increased about five times as compared to that with no electric field applied. The results also showed that adopting a small polarity-reversal interval and an appropriate electrode array could produce a high and uniform removal of phenol from the soil. It is believed that in situ bioelectrokinetic remediation holds the potential for field application.  相似文献   

8.
A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the “self-purification” capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using “waste heating” from an incineration facility.  相似文献   

9.
During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.  相似文献   

10.
In situ sequenced bioremediation of mixed contaminants in groundwater   总被引:3,自引:0,他引:3  
A mixture of chlorinated solvents (about 0.5-10 mg/l), including tetrachloroethene (PCE) and carbon tetrachloride (CT), together with a petroleum hydrocarbon, toluene (TOL), were introduced into a 24 m long x 2 m wide x 3 m deep isolated section (henceforth called a gate) of the Borden aquifer and subjected to sequential in situ treatment. An identical section of aquifer was similarly contaminated and allowed to self-remediate by natural attenuation, thus serving as a control. The control presents a rare opportunity to critically assess the performance of the treatment systems, and represents the first such study for sequenced in situ remediation. The first treatment step was anaerobic bioremediation. This was accomplished using a modified nutrient injection wall (NIW) to pulse benzoate and a nutrient solution into the aquifer, maximizing mixing by dispersion and minimizing fouling near the injection wells. In the anaerobic bioactive zone that developed, PCE, CT and chloroform (CF), a degradation product of CT, degraded with a half-lives of about 59, 5.9 and 1.7 days, respectively. The second step was aerobic bioremediation, using a biosparge system. TOL and cis-1,2 dichloroethene (cDCE), from PCE degradation, were found to degrade aerobically with half-lives of 17 and 15 days, respectively. Compared to natural attenuation, PCE and TOL removal rates were significantly better in the sequenced treatment gate. However, CT and CF were similarly and completely attenuated in both gates. It is believed that the presence of TOL helped sustain the reducing environment needed for the reduction of these two compounds.  相似文献   

11.
Despite a rapid expansion over the past decade in the reliance on intrinsic bioremediation to remediate petroleum hydrocarbon plumes in groundwater, significant research gaps remain. Although it has been demonstrated that bacterial sulfate reduction can be a key electron accepting process in many petroleum plumes, little is known about the rate of this reduction process in plumes derived from crude oil and gas condensates at cold-climate sites (mean temperature <10 degrees C), and in complex hydrogeological settings such as silt/clay aquitards. In this field study, sulfate was injected into groundwater contaminated by gas condensate plumes at two petroleum sites in Alberta, Canada to enhance in-situ bioremediation. In both cases the groundwater near the water table had low temperature (6-9 degrees C). Monitoring data had provided strong evidence that bacterial sulfate reduction was a key terminal electron accepting process (TEAP) in the natural attenuation of dissolved hydrocarbons at these sites. At each site, water with approximately 2000 mg/L sulfate and a bromide tracer was injected into a low-sulfate zone within a condensate-contaminant plume. Monitoring data collected over several months yielded conservative estimates for sulfate reduction rates based on zero-order kinetics (4-6 mg/L per day) or first-order kinetics (0.003 and 0.01 day(-1)). These results favor the applicability of in-situ bioremediation techniques in this region, under natural conditions or with enhancement via sulfate injection.  相似文献   

12.
生物表面活性剂是由微生物分泌的天然产物,由于其物理性质和化学结构与许多人工合成的表面活性剂相似,并且对土壤、淡水、海洋等生态系统毒性较低,因而在环境污染治理方面,特别是在重金属和石油等有机溶剂污染的原位和异位生物修复方面具有极大的应用潜力.主要综述了近年国内外生物表面活性剂在廉价制备、作用机理、环境修复中的研究进展.  相似文献   

13.
地下水中BTEX的原位生物修复研究进展   总被引:2,自引:0,他引:2  
BTEX是苯、甲苯、乙苯和二甲苯的统称,存在于原油和石油产品中,其作为化工原料,广泛应用于农药、塑料及合成纤维等制造业.BTEX已成为地下水中普遍存在的污染物,自然衰减或生物修复工程已成功应用于地下水中BTEX的去除.自然衰减受BTEX污染的地下水具有良好的效果,但相比之下,生物修复工程更快、更有效.综述了在好氧和厌氧条件下,地下水中BTEX原位生物修复过程的微生物降解机制.  相似文献   

14.
This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a potential repository site for storing high-level radioactive waste. The study has been conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the proposed repository's system performance using different conceptual models. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed.  相似文献   

15.
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.  相似文献   

16.
A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO3 and NH4H2PO4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO4(2-) and higher concentrations of Fe(II) and CH4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.  相似文献   

17.
Phytoremediation has the potential to enhance clean up of land contaminated by various pollutants. A mathematical model that includes a two-fluid phase flow model of water flow as well as a two-region soil model of contaminant reactions was developed and applied to various bioremediation scenarios in the unsaturated zone, especially to plant-aided bioremediation. To investigate model behavior and determine the main parameters and mechanisms that affect bioremediation in unplanted and planted soils, numerical simulations of theoretical scenarios were conducted before applying the model to field data. It is observed from the results that parameters affecting the contaminant concentration in the water phase, such as aqueous solubility, the octanol-water partition coefficient, and organic carbon content of the soil controlled the contaminant fate in the vadose zone. Simulation using the developed model also characterized the fate and transport of the contaminants both in planted and unplanted soils satisfactorily for field applications. Although phytoremediation has the potential for remediation of contaminated soils, results from both modeling and field studies suggested that plants may not always enhance the remediation efficiency when the soil already has a high microbial concentration, when the contaminant bioavailability is low, or when the overall reaction is mass transfer-limited. Therefore, other steps to increase contaminant bioavailability are needed in phytoremediation applications; natural purification mechanisms such as aging, volatilization, and natural bioremediation should be considered to maximize the plant effect and minimize the cost.  相似文献   

18.
Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.  相似文献   

19.
Uranium is being actively transported from uraniferous sedimentary rocks into a peat bog at the Broubster natural analogue site in Caithness, Scotland. Massive calcareous sandstone within the Caithness Flags sequence is the main source of uranium which resides primarily within diagenetic apatite and dispersed U---Si---Ti phases. Supergene weathering processes have decalcified the sandstone and are effective in mobilising uranium by groundwater leaching, primarily along a fault zone. Uranium transport in solution by means of groundwater and surface flows is effectively terminated by retardation within 4-kyr-old peat deposits laid down on boulder clay. This process of secondary fixation has resulted in a young uranium anomaly in the peat which comprises in excess of 0.1 wt% U. The site has been investigated comprehensively to define the geometry of the anomaly together with the hydrogeology, hydrochemistry, petrology, mineralogy and the nature of the peat sink-term. The main physical and geochemical properties of the system, including the uranium decay series radionuclide distributions in water and solid samples, are documented in this paper. From these data, the processes governing the distribution of uranium have been quantified using a three-dimensional groundwater flow package and an equilibrium speciation model incorporating a recently developed electrostatic surface complexation model to account for cation-organic interactions. The results described form part of a coordinated project on natural radionuclide migration undertaken to improve confidence in predictive methods used for radiological assessment.  相似文献   

20.
Visual modflow是一个可以对三维地下水水流和溶质运移进行数值模拟评价的标准可视化专业软件.建立了砂箱物理实验模型来研究柴油在含水砂槽中的迁移特征.通过模型检验,各个监测时期观测值和预测值相关系数r值在0.564 ~0.669之间,证明这种建模方法是合理的和有效的.利用校正的模型对实验室含水砂槽中柴油运移特征进行模拟,发现所建模型可以较为准确地反映出含水砂槽中柴油污染物的分布特征,拟合、验证和预测结果显示该模型可作为地下水管理的有效工具,这为深入研究柴油污染地下水提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号