首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical distribution, life cycle, and developmental characteristics of the mesopelagic copepod Gaidius variabilis Brodsky in the Oyashio region were investigated by combining analyses of field copepodite populations with laboratory-rearing data of egg hatching and naupliar development. Field samplings from five discrete depths between the surface and ≤2000 m were made approximately every month for 1 year. Most populations of G. variabilis occurred between 600 and 1000 m depth. A modest degree of reversed diel vertical migration behavior and some stage-specific depth-distribution patterns were noted. All copepodite stages were observed throughout the year, suggesting a year-round spawning of G. variabilis. From a prominent abundance peak of Copepodite Stage 1 (C1) seen in June to August, together with development times of eggs and nauplii obtained in laboratory-rearing experiments, the major spawning season was extrapolated to be April to June, the phytoplankton bloom season. Tracing the peak abundance of each copepodite stage (distinguishing males and females for C4 to C6), the generation times of males and females were deduced as 2 and 1 year, respectively. All between-stage increments in terms of wet-, dry-, and ash-free dry weights were greatest in C3/C4, and least in C5/C6 for both males and females. The increments in C3/C4 and C4/C5 were greater for males than for females, reflecting a longer stage duration of the males. These weights did not increase in C5/C6 males, possibly because feeding ceased in C6 males. These results for G. variabilis are compared with those for some mesopelagic copepods previously reported from other regions. Received: 25 October 1999 / Accepted: 20 March 2000  相似文献   

2.
Egg production and viability in the copepod Temora stylifera (collected in the Bay of Naples, Italy in 1992) were strongly dependent on food type. A flagellate (Isochrysis galbana) diet induced the production of good quality eggs that developed to hatching. By contrast, two diatoms (Chaetoceros curvisetum, Phaeodactylum tricornutum) resulted in poor egg quality, with hatching success as low as 20% of total egg production. With the third diatom tested, Skeletonema costatum, females produced eggs for only 3 to 4 d, after which time they either became sterile or died. These results are discussed in relation to previous findings regarding the impact of the dinoflagellate Prorocentrum minimum and the diatom Thalassiosira rotula on the hatching success of T. stylifera eggs. Low egg viability was possibly not due to an absence of remating or a deficiency of some specific essential nutrient required for egg development but to the presence of inhibitory compounds blocking cell division during early copepod embryogenesis. This questions the traditional view that diatoms are an important food item regulating copepod secondary production.  相似文献   

3.
D. Liang  S. Uye 《Marine Biology》1996,125(1):109-117
Population dynamics and production of the calanoid copepod Acartia omorii Bradford were studied from November 1986 to November 1987 in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan. This species was present in the plankton from October to July (temperature range: 8.9 to 24.3°C), with peaks in February-March and June. During this period, nine generations could be detected, for which the mean population egg production rate and midstage abundance of each life stage older than naupliar Stage (N) II were determined to trace survival. The population suffered extremely high mortality during the early life stages: on average only 2.5% of the eggs produced recruited into NII. This large loss is probably concentrated within the egg stage, due to predation, including cannibalism, by omnivorous copepods, in addition to sinking loss of eggs in the water column. However, the mortality from NII to copepodite Stage (C) V was negligible, indicating low predation pressure by large carnivores. The biomass of A. omorii showed marked seasonal variations in parallel with numerical abundance. The instantaneous growth rate of each stage increased exponentially with increasing temperature. The integrated production rate of A. omorii from 7 November 1986 to 21 July 1987 was 749 mg Cm-3 or 5.62 g Cm-2  相似文献   

4.
Cod (Gadus morhua L.) eggs may develop and hatch within temperatures of −1.5 to 12 °C, but little is known about the effects of very low temperatures on larval characteristics. Eggs of the Northeast Arctic cod (Gadus morhua) were incubated at 1, 5 or 8 °C from Day 1 after fertilisation until hatching, and transferred to 5 °C after hatching. Histological samples of the axial musculature were taken at hatching and 5 d after hatching, and the data on muscle cellularity from these samples were related to survival and hatching, size, developmental data and viability of the yolk sac larvae. All larvae hatched at the same developmental stage. Incubation of eggs at 1 °C produced shorter larvae with a larger yolk sac and more, small deep fibres at hatching than larvae from eggs incubated at 5 or 8 °C. The larval size difference was still present 5 d after hatching, a time at which the larvae from 1 °C-incubated eggs were less developed and less resistant to an acute viability stress test (65 ppt salinity). Although there were no differences between temperature groups in number and size of muscle fibres 5 d after hatching, the deep fibres of the 1 °C-group contained less myofibrils than the two other groups. The phenotype of the larvae at hatching was thus affected within these incubation temperatures. Although all groups were transferred to the same temperature after hatching, the lowest egg incubation temperature (1 °C) still had a negative effect 5 d after hatching, as these larvae were both smaller, less resistant to stress and had less functional muscles at the time of first feeding. Our conclusion is therefore that 1 °C is close to, or below, the lower thermal tolerance limit for normal functional development of Northeast Arctic cod. The results are discussed in relation to larval viability and recruitment of this species in the wild. Received: 4 February 1998 / Accepted: 10 July 1998  相似文献   

5.
6.
Laboratory studies and field collections show that egg production by Centropages typicus (Krøyer) in New York shelf waters in autumn 1984 responded to both food and temperature. Rates of egg production were high (43 to 76 eggs female-1 d-1) in October, early in the fall diatom bloom. Later, although food concentrations remained high and female size actually increased, egg production declined, presumably in response to seasonally decreasing temperatures. Carnivorous diets did not support egg production. Development time for autumn-hatched C. typicus was 33 d at 15°C, a rate that gives a Q10 of 2.21 when compared with the spring development rate of 49 d at 10°C. We could find no evidence of physiological adjustments being made by this copepod for overwintering. Development was not arrested at any subadult stage and resting eggs were not produced. Trends in body size of copepodid stage V, however, suggest that an overwintering strategy may be invoked by this copepod in Junuary or February.  相似文献   

7.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

8.
The vertical distributions of eggs, nauplii, copepodites and adults of Calanus helgolandicus (Claus) from five oblique plankton-net hauls taken in May (1980), March and September (1981) and January (1982) at a site in the shelf sea to the south-west of the United Kingdom are described. The water depth is approximately 95 m and becomes thermally stratified during the summer months when a thermocline of ∼6 C° develops. In early spring when the water column was isothermal (∼8 °C), the development of the eggs and nauplii took place below 60 m and a single ontogenetic migration was observed between Nauplius VI (NVI) and Copepodite I (CI). As the temperature of the water increased, this migration occurred in progressively earlier naupliar stages. The eggs were distributed throughout the water column in the profile taken in early May when a 1 C° thermocline occurred between 30 to 40 m. The majority of the NI to NIV stages occurred below 40 m, with the ontogenetic migration taking place in the NIV stage; the NV and NVI stages were found above the thermocline. In September, the eggs were again distributed throughout the water column (101 490 m-2), with a maximum number of >4 500 m-3 occurring in the surface to 5 m depth interval. Nauplius I and II were found at all depths, demonstrating that hatching occurred throughout the water column. The ontogenetic migration in these late-summer profiles took place between the NII and NIII stages, the remainder of the nauplii being found above the thermocline in the top 20 m. This is the first time that an ontogenetic migration, similar to the developmental ascent observed in the naupliar stages of the euphausiid Euphausia superba in the deep ocean, has been shown for a copepod nauplius.  相似文献   

9.
J. Harms 《Marine Biology》1990,104(2):183-190
Liocarcinus holsatus (Fabricius) larvae, of females originating from the Elbe Estuary, FRG, were reared in the laboratory at constant 15°C in May 1988. For each larval stage, developmental time was measured by individual cultures (Zoea I: 6.7±0.7d; Zoea II: 5.0±0.6d; Zoea III: 4.8±0.7 d; Zoea IV: 5.3±0.6d; Zoea V: 6.1±1.1d; Megalopa: 10.45±0.7d). During the entire period of development, dry weight (W), carbon (C), nitrogen (N), and hydrogen (H) were measured daily (Zoea I to V) or every second day (Megalopa). The energy content (E) was estimated from C. Biomass and energy (per individual) increased in each larval stage as a parabolic function of age and is described by power functions. C, H, and E exhibit a higher percentage gain (relative to initial values at the time of hatching) than W and N. It is suggested that proportionally more lipid than protein is accumulated during larval development. Cyclical changes in the relative biomass (% W) correspond to the larval moult cycle, indicating a rapid uptake of water and minerals immediately after hatching and a later increase in tissue growth. Changes in the C:N ratio suggest that during the first period more lipid than protein is accumulated. These patterns of growth and elemental composition are compared with literature data and a high degree of similarity in the growth characteristics of decapod larvae is seen. In addition W, C, N, and H values as well as E were measured for the exuviae of Zoea I to V and Megalopa. The percentage loss of growth rate by exuviae for each larval instar were higher in W (12 to 16%) and C (8 to 12%), and varied between 5 and 10% for N, H, and E.  相似文献   

10.
The “resting” eggs of a marine neritic copepod, Tortanus forcipatus Giesbrecht, recovered from sea-bottom sediment were hatched in the laboratory. Hatching occurred at temperatures of 13° to 30°C, no eggs hatched at 10°C. Temperatures around 25°C were found to be optimal for hatching, although the range of optimal temperatures for hatching was approximately 5°C lower in eggs stored for 14 to 15 months than in those stored for 1 to 2 months. A wide range of salinity, from 18 to 54%S, was favourable for hachting. Eggs failed to hatch within the sediment mud, which suggests that they are in a state of dormancy in the mud. Hatching was successful under both light and dark conditions.  相似文献   

11.
Life cycle of the copepod Calanus hyperboreus in the Greenland Sea   总被引:11,自引:0,他引:11  
H.-J. Hirche 《Marine Biology》1997,128(4):607-618
The seasonal ontogenetic migration of the Arctic copepod Calanus hyperboreus was described from surface-to-bottom hauls in the central Greenland Sea Gyre (GSG) and in the Westspitsbergen Current (WSC). All stages except females spent the winter below 500 m in the GSG and below 1000 m in the WSC. Seasonal ascent begins in April, and descent in July. For the C.␣hyperboreus population an active downward transport of 8.1 g m−2 dry weight during 8 months of overwintering was estimated, similar to flux rates of particulate matter in sediment traps. Seasonal distribution of biomass was determined from weight measurements of single stages. Annual means varied from 4.0 to 9.2 g m−2 in two different years in the GSG and were 1.1 in 1 year in the WSC. The life cycle in the Greenland Sea was reconstructed from field data on stage composition, vertical distribution, reproduction, and moult cycle phase from tooth development of CV. Laboratory experiments were conducted on the moulting of CIV and CV in fall. A 3-year (males) and 3- to 4-year (females) life cycle is proposed for the GSG and 2 to 3 years for the WSC. However, the small number of young larvae and the incomplete spring ascent by older copepodites observed in the WSC cast doubt on the reproductive success in the WSC. A suite of physiological strategies and adaptations performed by the developmental stages support survival of this species in harsh environments. Received: 25 January 1997 / Accepted: 11 February 1997  相似文献   

12.
M. Sheader 《Marine Biology》1996,124(4):519-526
Developmental and seasonal changes in egg volume were examined in a population of the amphipod Gammarus insensibilis Stock occurring on the south coast of England, towards its northern limit of distribution. Results showed a marked increase in egg volume during development (2.9 times by Egg Stage V), resulting from water uptake and from the conversion of yolk reserves into structural elements. The maximum rate of increase coincides with the period of organ and limb development. At hatching, after initial rupture of the egg membrane by urosome spines, egg volume increases rapidly over a short period (15 to 20 min) by a further 30% (uptake rate 3.6×10–5 mm3s–1), followed by a post-hatching decrease in juvenile volume. Increase in size at hatching is the result of drinking by embryos, although changes in body-wall permeability may contribute. Females carrying eggs in an advanced stage of development exhibit egg-collecting behaviour. This is seen as an adaptation to an increased likelihood of egg loss with increase in volume of the brood as hatching approaches. Seasonal changes in Stage I (early) egg size are marked in this species, with winter eggs as much as 60% greater in volume than summer eggs. Egg size is inversely related to the temperature during oocyte development. A simple model has been derived to account for the observed seasonal pattern in egg size. The consequences of seasonal variation in egg and juvenile size are considered.  相似文献   

13.
We evaluated the duration of Copepodite Stages C1 to C6, the biological cycle and the number of annual generations of the planktonic copepod Acartia clausi in a meso-oligotrophic area of the eastern Mediterranean Sea (Saronikos Gulf, Greece). The results were based on 95 zooplankton samples collected during the period November 1988 through June 1990, at intervals of 1, 2, 7 and 15 d, the sampling intervals being dependent on the abundance of A. clausi. Time-series analysis (cross-correlation) of fluctuations in the comparative abundance (percentages) of the copepodite stages present was used to determine the duration of the development stages and generation length. This methodology could significantly contribute to the identification of cohorts, and hence to the estimation of stage duration, from field data for a given copepod species. The development of A. clausi stages was not isochronal; duration of the first copepodite stage was shorter than that of the last three stages. The mean generation length estimated (28.6 d) is among the highest recorded in the literature for A. clausi at the range of temperatures prevailing in the area (13 to 25°C). Throughout the year there were four or five generations. The possible limiting role of food availability on the duration of each stage and hence on generation length is also discussed.  相似文献   

14.
Copepod resting eggs are abundant in the seabed of many bays and estuaries where they provide a potential source of recruits for growth of planktonic populations. In the northeastern Gulf of Mexico the copepod Centropages hamatus (Lillejeborg) occurs in the water column only during the late fall, winter and early spring. The species produces subitaneous and diapause eggs, and both egg types have been found in the seabed. We determined the longevity of these two egg types to ascertain their potential for contributing to the growth of the planktonic population and for sustaining a persistent egg bank. Eggs were collected from females and incubated in the laboratory under temperature and oxygen conditions chosen to simulate field conditions. The diapause eggs were also exposed to sulfide. The total hatching success of subitaneous eggs in two experiments declined from highs of 78 and 97% to zero after 60 and 90 d of exposure to anoxia. The total hatching success of diapause eggs that were exposed to anoxia for 90 d however was typically greater than 80%. Some diapause eggs hatched after being incubated under anoxia for 437 d. Diapause eggs survived longer at ambient field temperatures when incubated under anoxia (437 d) compared to normoxia (118 d). Exposure to sulfide did not result in greater mortality of diapause eggs compared to anoxia alone. Diapause eggs that were incubated at ambient field temperatures did not hatch when exposed to normoxia until the temperature dropped to <20 °C. The results of this study suggest that C.␣hamatus sustain a short-term reserve of subitaneous eggs in the seabed that provides recruits for the current year's population. The greater longevity of diapause eggs suggests that they sustain the seasonal reappearance of the species year after year in the northeastern Gulf of Mexico. However, the contribution of diapause eggs of C. hamatus from the Gulf of Mexico to a persistent egg bank is questionable since hatching ceased after 437 d. Received: 30 July 1997 / Accepted: 18 January 1998  相似文献   

15.
Growth rates were determined for copepodites of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total copepodite development time was as short as 4 to 5 d. Mean instantaneous growth rates (g) ranged from as high as 1.2 d−1 to as low as 0.1 d−1. In general, cyclopoid copepods appeared to grow more slowly than calanoids of the same size. Enhancement of resources by nutrient addition caused a 32% increase in growth rates in experiments from a mesotrophic site, but only a 17% increase at a more eutrophic site. Additionally, copepodites at both sites showed faster development and generally larger size at stage in response to nutrient addition. Growth rates were positively related to chlorophyll concentration in the >2 μm size-fraction. A significant relationship of growth rate to body size (r 2 = 0.45) emerged across a wide range of trophic status, but it was confounded with resource availability. It appears that growth in tropical copepod copepodites may be frequently limited by resources in a size-dependent manner. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

16.
The effects of low oxygen concentrations on the hatching and viability of copepod eggs at two stages of embryological development were investigated. Fully developed eggs from Acartia tonsa (Dana) and Labidocera aestiva (Wheeler) collected between July and September 1991 at Turkey Point, Florida, USA, hatched at lower oxygen concentrations than newly spawned eggs given the same incubation periods. Since many of the newly spawned eggs subsequently hatched when exposed to normoxic conditions, it is likely that the exposure to low oxygen delayed embryonic development. At oxygen concentrations where no initial hatching occurred, the subsequent hatching success of fully developed eggs of A. tonsa was higher than that of newly spawned eggs, indicating that newly spawned eggs were more sensitive to low oxygen concentrations. No such difference was observed for the eggs of L. aestiva.  相似文献   

17.
T. Kobari  T. Ikeda 《Marine Biology》1999,134(4):683-696
Vertical distribution and population structure of Neocalanus cristatus were investigated at Site H in the Oyashio region from September 1996 through October 1997 to evaluate their life cycle mode. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of life cycles of this species. At Site H, N. cristatus spawned throughout the year below 500 m depth, with a peak from October to December. The resulting eggs and nauplii floated/migrated upward, and formed an abundance peak of Copepodite Stage 1 (C1) in the surface layer in February. In the surface layer, the C1 developed and reached C5 by early June through a phytoplankton bloom which occurred in mid-March to end of June. The C5 migrated to deeper layers in July and August, where they molted to adults. Apparently, the developmental time from C5 to adults was highly variable (>1 month), and some might overwinter. The life cycle of N. cristatus appeared to be annual for the major portion of the population. Taking into account sampling season, temporal changes in vertical distribution and population structure data collected from regions other than Site H, there was a close correlation in the timing of the life cycle over the entire subarctic Pacific, but the reproduction season (April to June) was observed to be different in the Okhotsk and Japan Sea populations. Regional comparison of prosome length of C5 individuals, including those in the Bering Sea, indicated significantly larger sizes of specimens from the Japan Sea and Okhotsk Sea, as compared with those from the entire subarctic Pacific. Possible causes for regional variability in life cycle patterns and body sizes are discussed. Received: 18 December 1998 / Accepted: 19 April 1999  相似文献   

18.
The effect of hydrostatic pressure on embryonic development of the calanoid copepod Calanus sinicus was studied. Differences of pressure effect among blastomere stages, 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, blastula and limb-bud stage, were examined under two pressurizing conditions, abruptly (10 atm/min) and gradually (0.1 atm/min) increasing. Egg hatching success, deformity frequency and apoptotic cell degradation of hatched nauplii were examined. Egg hatching success rate was not significantly different between blastomere stages, and also between pressurizing conditions. Deformity frequencies of hatched nauplii were low in the early 1-cell and 2-cell stages, and high in the later blastula and limb-bud stages, in both abrupt and gradual pressurizing conditions. On the other hand, in regard to difference in pressurizing conditions, deformity frequency in gradual pressurizing was significantly higher than that in abrupt pressurizing rate. Gradual pressure increase seems to be more harmful to C. sinicus eggs than abrupt pressure change. Apoptosis induced in nauplii by hydrostatic pressure was detected for the first time in marine zooplankton. The embryos of C. sinicus are sensitive to pressure variations, that is, these embryos are supposed to sink to deeper waters, incurring greater risk of having deformities. In the field, C. sinicus ascend to the surface and spawn at night. By looking from this upward behavior, eggs are spawned at lower pressure and warmer temperature. Probably, the harmless low pressure and warm temperature lead eggs to hatch early and to recruit successfully.  相似文献   

19.
Hydrostatic pressure-induced apoptosis on nauplii of Calanus sinicus   总被引:1,自引:0,他引:1  
The effect of hydrostatic pressure on embryonic development of the calanoid copepod Calanus sinicus was studied. Differences of pressure effect among blastomere stages, 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, blastula and limb-bud stage, were examined under two pressurizing conditions, abruptly (10 atm/min) and gradually (0.1 atm/min) increasing. Egg hatching success, deformity frequency and apoptotic cell degradation of hatched nauplii were examined. Egg hatching success rate was not significantly different between blastomere stages, and also between pressurizing conditions. Deformity frequencies of hatched nauplii were low in the early 1-cell and 2-cell stages, and high in the later blastula and limb-bud stages, in both abrupt and gradual pressurizing conditions. On the other hand, in regard to difference in pressurizing conditions, deformity frequency in gradual pressurizing was significantly higher than that in abrupt pressurizing rate. Gradual pressure increase seems to be more harmful to C. sinicus eggs than abrupt pressure change. Apoptosis induced in nauplii by hydrostatic pressure was detected for the first time in marine zooplankton. The embryos of C. sinicus are sensitive to pressure variations, that is, these embryos are supposed to sink to deeper waters, incurring greater risk of having deformities. In the field, C. sinicus ascend to the surface and spawn at night. By looking from this upward behavior, eggs are spawned at lower pressure and warmer temperature. Probably, the harmless low pressure and warm temperature lead eggs to hatch early and to recruit successfully.  相似文献   

20.
Summary. Infochemicals are known to play a key role in mediating predator-prey interactions, both in aquatic and terrestrial communities. However, state-dependent variation may exist in how effectively individuals can use this information, depending on genotype, life stage and experience. For our study, we used the predator-prey model system fish-waterflea Daphnia magna Straus (Cladocera, Daphniidae). Adult Daphnia use fish-derived infochemicals, so-called kairomones, as indicators of predation risk, and exhibit a spectrum of morphological, behavioural and life-history responses to the presence of fish kairomones. Here, we investigate whether diapausing eggs, an embryonic resting stage in the life cycle of D. magna, also use fish kairomones and tune their hatching to the risk of fish predation, as reported for diapausing stages of dinoflagellates. In two laboratory experiments, we studied hatching proportion and time until hatching of D. magna diapausing eggs in the absence and presence of fish kairomones. D. magna families differed significantly in their response to the presence of fish kairomones; some families reduced hatching proportion, whereas others increased it. Our results imply genotype-dependent differences in the hatching reactions to fish kairomones as observed for other traits in adult Daphnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号