首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为研究单井抽出-回渗循环地下水水力控制程度(抽水井对回渗水的捕获率)和关键因素对水力控制程度的影响机制,构建了基于GMS模拟软件的MODPATH地下水流线示踪模型,根据实验室尺度砂柱物理模型的实测水位数据校准,结合渗透系数为0.009、0.02、0.04、0.09 cm/s四种不同水文地质条件和抽出回渗量为1、2.5、5、10 cm3/s四种水动力条件以及25、30、32、35 cm四种回渗半径的情景设置,模拟了地下水质点的迁移轨迹,刻画了抽水井的捕获范围,量化了抽水井对地下水流场的水力控制程度,并构建了水力控制程度与关键参数之间的定量关系.结果表明:(1)砂柱物理模型在1、2.5、5、10 cm3/s四种流量下达到抽出-回渗平衡时,捕获率分别为95.63%、97.69%、97.93%和98.17%;(2)物理模型内抽水井捕获范围均小于回渗范围且捕获率随流量增加而变大;(3)回渗范围和含水层渗透系数一定时,随着抽出-回渗量的增大,捕获范围和捕获率均增大;(4)当回渗范围和抽出-回渗量一定时,随着含水层渗透系数的增大,捕获范围和捕获率均减小;(...  相似文献   

2.
以吉林西部为研究区,建立地下水流数值模拟模型,分别应用蒙特卡罗方法和拉丁超立方方法在研究区10个县(市)开采量的可行范围内进行采样,经对比选择拉丁超立方抽样结果得到输入(开采量)—输出(水位降深)数据集,建立小波神经网络模型作为地下水流数值模拟模型的替代模型,而后对替代模型有效性作误差分析,并与多元非线性回归替代模型进行对比.结果显示,2种替代模型在功能上都能逼近地下水流数值模拟模型,但小波神经网络模型得到的水位降深均值和水位降深剩余标准差与模拟模型计算结果的相对误差分别低于多元非线性回归模型76%和45%,说明小波神经网络模型更适合作为地下水流数值模拟模型的替代模型,这为减少优化模型求解过程中直接调用模拟模型所造成的计算负荷提供了一种有效的替代方法.  相似文献   

3.
以内蒙古乌拉特中旗金泉工业园区水源地为研究区,建立了研究区地下水流数值模拟模型.采用拉丁超立方方法得到输入(抽水量)输出(水位降深)数据集,运用克里格法建立了地下水流数值模拟模型的替代模型—克里格模型.将克里格模型输出结果与地下水流数值模拟模型输出数据集进行对比发现,克里格模型和地下水流数值模拟模型得到的地下水位降深均值的拟合平均相对误差为0.22%,地下水位降深剩余标准差的拟合平均相对误差为0.03%,拟合误差很小.表明克里格模型可以有效地替代地下水流数值模拟模型,这为大幅减小优化模型在优化迭代求解过程中多次调用模拟模型造成的巨大计算负荷提供一种有效的替代方法.  相似文献   

4.
管道是含水层中十分常见的水文地质结构,目前关于含水层中地下水管道流模拟常用的模型有等效渗透系数模型、多节点井流(MNW)模型和管道流(CFP)模型,其中MNW模型和CFP模型被耦合到地下水数值模拟软件MODFLOW中。MNW模型使用有限差分网格渗透系数对管道流进行计算,在数值模拟过程中假设包含管道的含水层网格渗透系数为孔隙介质渗透系数,但其并不能反映管道-含水层网格系统的高渗透性。基于等效渗透系数法对MNW模型进行修正,为了检验修正后MNW模型的模拟效果,以二维砂槽试验数据为例,分别采用CFP模型、原始MNW模型和修正MNW模型对管道周围含水层地下水流场进行了数值模拟,并将模拟流场与实测流场进行了对比分析。结果表明:修正MNW模型与原始MNW模型相比其模拟误差降低了76.14%,且其模拟误差小于CFP模型,说明修正后的MNW模型提升了多节点井流模型对含水层中管道流的模拟效果,更好地体现了现实中管道与含水层的双重介质性,对更加高效而准确地进行含水层中地下水管道流数值模拟具有实际意义。  相似文献   

5.
对于多层承压含水层中的深基坑工程而言,水文地质条件复杂,基坑施工常因隔水层厚度不足或水力坡降过大导致坑底突涌,盲目地进行坑内降水又会造成基坑渗流场突变、基坑内外水位差过大等问题。因此,地下水的有效控制成为基坑开挖成败的关键。以某深基坑降水工程为实例,通过理论计算并结合数值模拟研究了不同承压非完整井的相关参数,包括滤管数量、位置和长度,揭示了相关参数对减压降水效果的影响,优化了隔、降组合降水措施。结果表明:采用混合井双滤管复合结构深井时降水成效显著,且第一、二承压含水层上、下分层滤管长度比接近1∶1时达到最优值,此时理论计算结果与数值模拟结果的相对误差最小,仅为6.81%,故对处于多层承压含水层等复杂水文地质条件下的深基坑工程可结合实际地层结构借鉴混合井分层滤管长度最优比值进行降水设计。  相似文献   

6.
在平原第四系孔隙承压含水层开展抽水试验时常发生抽水井中地下水水位降至隔水顶板以下而出现承压-无压流并存的现象,如何利用多孔抽水试验确定承压含水层的水文地质参数是地下水动力学研究中的一个重要问题。利用江汉平原北部肖家港地区第四系上更新统(Qp_3~(al))孔隙承压含水层中开展的多孔抽水试验,探讨了承压-无压流并存条件下确定承压含水层水文地质参数的方法。结果表明:利用多孔抽水试验数据,综合运用泰斯承压井流模型和Chen承压-无压井流模型可同时确定承压含水层的导水系数、弹性释水系数和重力给水度等关键水文地质参数,据此得到肖家港地区上更新统孔隙承压含水层的导水系数在77.28~109.64 m~2/d之间,弹性释水系数为3.17×10~(-4),重力给水度为1.97×10~(-1)。利用泰斯承压井流模型计算承压含水层的导水系数和弹性释水系数时,应尽量选取抽水后期或者距离抽水井较远的观测井地下水水位降深数据,以尽量减少承压含水层无压区重力释水对计算结果的影响。  相似文献   

7.
构建了填埋场渗漏条件下,含水层-监测井系统水流和污染物运移的代表性概念模型.利用等效渗透系数法描述双重介质系统中的水流运动和水头分布,而多孔介质溶质运移的ADE方程和管流的一维溶质运移方程被分别用来模拟污染物在含水层和井孔中的迁移和分布,最终形成了描述渗滤液渗漏条件下监测井-含水层系统中污染物迁移分布的控制方程.基于Fortan平台,编制了该方程的有限差分求解程序,应用该程序模拟分析了填埋场渗漏条件下,地下水监测井内部及周边水流和溶质的运动、井筒存在对水流和溶质运移的影响.结果表明:井筒效应影响井孔周边的局部地下水流场和浓度场,导致井孔内下部区域污染物浓度增大,井筒外一定区域浓度减小;井筒效应的影响随着径距增加而减小,当径距大于2倍含水层厚度时,井筒效应导致的监测误差最大不超过20%.井径对井筒效应的影响较为复杂,并非单调增加.在本案例中,井径小于0.1m时,井筒效应随着井径增大而增大;反之,当井径大于0.1m后,井筒效应导致的监测误差随着井径增大而减小.含水层渗透系数和比单位弹性贮水系数越大,井筒效应的影响越小.因此具有强渗透性且孔隙度更大的卵、砾石含水层中,井筒效应的影响更小;而对于弱渗透性或中等渗透性的砂土、砂黏土含水层,井筒效应对监测效果的影响更大.  相似文献   

8.
为了预测井工煤矿开采后地下水水位变化,及对矿区内居民水源井的影响程度,文章在详细分析赵庄煤矿区域及井田水文地质条件的基础上,运用VisualMODFLOW软件对该煤矿及周边影响范围进行了地下水流数值模拟分析,预测了赵庄煤矿开采后不同阶段地下水水位、水量及影响范围的变化,并分析了煤矿开采对当地居民饮用水源的影响,模型的识别与检验表明,所建模型能够较好地反映水文地质条件,能够与目前实际开采地下水影响相吻合。  相似文献   

9.
地下人防项目是指战时用于人员、物资掩蔽,平时为商业用途的地下工程。地下人防项目地下水环境影响评价技术评估,应遵循《环境影响评价技术导则地下水环境》(HJ 610-2011)相关要求,结合项目场区所在地的地下水水位、地下水分布及环境水文地质条件、污染源状况、地下水开采利用状况及具体施工情况,分析地下水水位变化诱发的环境水文地质问题的影响范围、程度及项目建设对地下水水质污染,重点关注水位变化分析和地面沉降分析,污染防治措施主要从防治地下水水质污染、环境水文地质问题两方面考虑。  相似文献   

10.
地下水封洞库因其安全、环保、建造成本低等优势,已成为石油储备的重要形式,但场地的水文地质条件决定着洞库建设的成败.本文从地下水封洞库建库的适宜性条件分析入手,明确了对洞库选址具有重要影响的水文地质条件,即洞库所处的水文地质单元位置、地下水水位、岩体渗透性、地下水水质,在此基础上建立了地下水封洞库选址适宜性评价指标体系,通过层次分析法确定了各评价指标的权重,并通过黄岛地下水封洞库实例验证了该评价指标体系的可靠性.  相似文献   

11.
海岛水资源供需矛盾日益显著。综合运用地球物理勘探、水文地质钻探及同位素示踪分析对广东省珠海市万山岛的推船湾库区开展地下水资源可调蓄性和可再生性评价工作。通过高密度电阻率法和水文地质钻探法揭示库区地层结构,发现松散沉积物含水层在空间上分布不连续,与裂隙含水层共同构成该区地下水主要含水层,基岩层构成隔水底板;松散沉积含水层的渗透系数为8.30×10-3 cm/s,给水度为0.32;裂隙含水层的渗透系数为2.52×10-5 cm/s,给水度为0.10;推船湾库区含水层的地下水储存量约为14873 m3,储水空间较大。利用同位素示踪确定降水是地下水的主要来源,通过径流分割确定地下水补给量为145065 m3/a,地下水更新周期约为37 d,表明库区地下水补给条件较好,具有可再生性。研究结果为解决花岗岩海岛地下水资源勘探和管理提供了技术参考。  相似文献   

12.
内蒙古乌海热电厂水源地地下水资源量评价   总被引:2,自引:1,他引:1  
在分析勘察区水文地质条件的基础上,用水量均衡法计算了该区地下水的补给量和排泄量,结果为负均衡。水源地开采后水源主要来源于黄河激发补给量,抽水试验和数值模拟表明黄河激发补给量为3.45×104m3/d。根据水位预测,水源地开采20年后和不利水文、气象条件下连续开采2年,水位下降值均不及含水层厚度的1/10,说明水源地开采量3×104m3/d是有保证的,可以满足电厂供水要求。  相似文献   

13.
北京凉水河流域的同位素和水化学特征分析表明:1)地下水水质在100m以浅相对较差,但到2017年为止,水质保持稳定.2)浅层地下水与平原区河水同位素相对富集,且落在同一条蒸发线上;但整体上河水与浅层地下水水化学类型不同,据此推断山前冲洪积扇河水入渗是区域地下水补给的重要来源,下游地下水主要受到侧向径流影响.3)同位素平...  相似文献   

14.
通过分析复杂井田不同含水层的常规元素、微量元素、氘氧同位素与氚同位素的水化学特征来判断各含水层的水力联系,并分别建立了Piper识别图版、Durov识别图版、氘氧同位素识别图版,借此可以快速甄别矿井突水的来源.结果表明:研究区地下水主要为大气降水补给,第四系含水层与直罗组含水层存在显著联系,直罗组含水层与延安组存在有限的联系.利用各含水层不同岩性导致的水化学离子特征差异和氘氧同位素、氚同位素的示踪特性建立识别图版,可有助于快速识别补连塔矿区突水水源,并对不同含水层的突水事故提出针对性的解决措施.  相似文献   

15.
反硝化作用是地下水硝酸盐污染去除最重要的过程.由于水文地质条件和水文地球化学环境的复杂性和不确定性,精准测定含水层反硝化速率是反硝化过程的研究难点.选取潮白河冲洪积扇中部中国环境科学研究院地下水创新野外基地作为研究区,基于野外原位试验和15N同位素示踪法提出一种含水层反硝化速率的测定方法.该方法综合体现了研究区实际水文地质条件和水文地球化学环境对反硝化作用的影响,并充分考虑了硝酸盐在含水层中稀释弥散作用对计算结果的影响.结果表明:①潮白河冲洪积扇中部某地地下26~28 m处于还原环境,含水介质以粉细砂为主,ρ(NO3-N)平均值为2.77 mg/L.②地下26~28 m反硝化速率在349.52~562.99 μg/(kg·d)(以N计,下同)之间,平均值为450.31 μg/(kg·d).通过与研究区含水介质、采样深度和硝酸盐背景值相似的国内外案例对比研究,初步评估结果处于合理区间.③测试结果具有一定不确定性,主要来自忽略中间产物NO2-和NO的计算方法、扰动采样方法、N2O的操作规范程度及采样频率等方面.研究方法为测定含水层硝酸盐速率研究提供了新的思路,研究结果可为地下水中硝酸盐转化过程机理研究、地下水硝酸盐污染修复及风险管控提供关键的理论支撑数据.   相似文献   

16.
黄河下游影响带地下水资源评价及合理开发利用   总被引:9,自引:0,他引:9  
论文研究黄河下游影响带(河南段)地下水资源评价及合理开发利用问题。在概要介绍河南省黄河影响带水文地质条件基础上,运用FEFLOW建立研究区三维地下水流模型,计算出地下水多年平均补给资源28.35×108m3/a和可开采资源量19.43×108m3/a。重点阐述新增9个水源地的开采条件,并通过地下水模型预测新增133×104m3/d开采量条件下,浅层地下水位最大降深小于20m,开采5~10年后地下水趋于稳定,新增开采量的62.58%来自黄河水的补给。研究表明,黄河对研究区地下水具有重要的补给作用,新增地下水开采量是有保证的。同时阐述了研究区地下水可持续开发利用的对策。  相似文献   

17.
官地水库的库首由雅砻江自身河弯形成了一个近东西向的单薄分水岭,该分水岭南北方向上长仅1 880m,沿南北向展布的石炭系-二叠系碳酸盐岩贯穿了水库内外,构成了潜在的库水外渗通道.笔者在现场地质、水文地质调查和观测资料综合分析的基础上,构建了该地区的水文地质概念模型,运用数值模拟方法对天然和水库正常蓄水条件下的地下水流场特征进行了模拟,通过对不同条件下地下水流场特征的分析研究,认为天然条件下地下水分水岭已经消失,水库正常蓄水条件下存在水库渗漏问题.水库正常蓄水条件下地下水渗流场的模拟结果表明,其水库渗漏量约3 670 m3/d,其中通过平川组上段、马坪组中段和阳新组上段地层渗漏的水量约占总渗漏量的77%,因此防渗的关键是封堵这三套地层.  相似文献   

18.
为研究渗滤液中致病性病毒对填埋场隔离距离的影响,提出一种基于系统健康风险目标的建模方法,用于确定地下水梯度、水力传导系数和包气带厚度对隔离距离的影响,基于线性剂量-效应模型和可接受的感染风险[<10-4/(人·a)]推导确定了饮用水肠道病毒浓度限值,通过耦合渗漏源强模型-以及水流和病毒在包气带中的纵向迁移转化和含水层中的水平迁移转化模型,构建了污染物泄露-迁移-降解的解析模型,并基于Monte-Carlo模拟表征解析模型中参数的不确定性.选择某典型生活垃圾填埋场开展案例研究,结果表明,在砂含水层中为44~564m,在砾石含水层中为91m~2.39km,在粗砾石含水层中为1.74~27.29km;地下水梯度从0.001变化到0.05,导致最高梯度处的隔离距离比最低梯度大10~20倍;当包气带厚度从1m增加到10m时,隔离距离可缩短到10m以内.隔离距离的确定需根据具体的安全防护要求和水文地质条件确定.  相似文献   

19.
The groundwater regime in Upper Palar basin, Tamilnadu has been highly contaminated in several locations due to discharge of effluents from a large number of tanneries. At some places total dissolved solids (TDS) concentration in groundwater was found as high as 8000 mg/l. Transmissivity and storativity of the regional aquifer were estimated at a few locations. The porosity and dispersivity values were not determined in the field. These parameters were assumed based on data available for similar geological formations elsewhere. The aquifer conceptualization thus arrived at formed the basis of a numerical groundwater flow model which was constructed using the finite difference method. The flow model was calibrated for steady state and then for transient condition for the period of 1984-92. The computed heads and calibrated parameters of the flow model were used to compute groundwater velocities. The migration of contaminants for a 20 year period was computed using the hydraulic heads and effective porosity value in a pathline model using FLOWPATH software. Mass transport model was constructed using Method of Characteristics (MOC) computer code in a separate model. The seepage rate of effluent is assumed at a rate of 30% of that discharged on the surface. The mass concentration of solute in the effluent reaching the water table was assumed as 40%, the same as in the surface effluent. The mass transport model was calibrated for a 20 year period. Prediction of contaminant migration from different clusters in the basin was analyzed. The prediction results indicated elevated TDS concentration of more than 4000 mg/l from most clusters. Also the area of the contaminated zone is likely to double in 20 years from contaminated zone of 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号