首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了解陕西省PM2.5分布特征及影响因素区域差异,基于陕西省2019年PM2.5浓度数据,采用空间数据统计方法、空间自相关分析法和地理探测器法对PM2.5时空分异特征及驱动因素进行探究,以期为陕西省PM2.5研究与治理提供可靠的科学依据。结果表明:陕西省PM2.5污染呈“冬高夏低”、“中部高、南北低”的特点。陕西省PM2.5浓度空间分布表现为极显著的空间正相关性,陕南部分县域为低低聚集区,关中地区渭南、西安、咸阳部分县域为高高聚集区。对陕西省PM2.5浓度影响最大的是社会经济因子(0.328—0.548),陕北地区为GDP(0.932),关中地区为人口密度(0.936),陕南地区为相对湿度(0.710)。交互探测结果表明:陕西省主导交互因子为人口密度∩GDP,各种复杂的自然因素和人为活动因素耦合会大大加强对PM2.5浓度的解释力。  相似文献   

2.
京津冀PM2.5时空分布特征及其污染风险因素   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析京津冀及其周边区域2013年典型污染事件中PM2.5的时空分布特征及污染风险因素,根据国家城市环境空气质量实时发布数据和京津冀地区地理国情信息监测成果,采用空间数据挖掘方法对PM2.5污染的热点区域进行了划分;并采用地理探测器定量分析了PM2.5污染风险因子及其影响程度. 结果表明:在选取的京津冀6个城市中,在PM2.5污染事件统计上存在保定—廊坊—北京—天津—承德—张家口的污染顺序. PM2.5污染在空间上呈河南省(山东省)—河北省—北京市(天津市)一线的带状分布特征,在单次污染事件中,城市间的PM2.5污染存在空间运移关系. 空间热点探测表明,京津冀及其周边区域主要分为5个热点聚集区,其中3个高值区分布在北京市、天津市、河北省和山东省的中部,面积分别为5.31×104、10.26×104、5.04×104 km2. 在8个污染风险因子中,污染企业总数(影响力为0.97,下同)、降水量(0.93)、地形坡度(0.89)对PM2.5污染的影响显著高于其他风险因子;其他风险因子影响力排序依次为人口数量(0.60)、降水量大于0.1 mm的降水日数(0.57)、地表覆盖类型(0.52)、年均相对湿度(0.51)、年均风速(0.33),但风险因子间相比没有显著性差异. 研究显示,京津冀地区PM2.5污染的主要因素是污染物排放,其次,气象要素中的年降水量和自然地理环境中的地形坡度也是影响PM2.5污染特征的重要风险因子.   相似文献   

3.
PM2.5变化的驱动因素是大气PM2.5研究的重要内容.为了揭示PM2.5污染的特点及其驱动影响因子,以广州市为例,采用地理探测器方法探测自然因素(包括平均降水量、平均温度、平均气压、平均相对湿度、平均风速、植被指数)与社会经济因素(包括人口密度、国内生产总值、工业总产值、人均公园绿地面积、公交车辆数、电力消费量)对2015年广州市ρ(PM2.5)变化的影响机制与差异.结果表明:①基于因子探测分析发现,对ρ(PM2.5)变化影响最大的前三位驱动因素分别为植被指数、公交车辆数与电力消费量,对应的因子影响程度指标值分别为0.51、0.46、0.40.②基于生态探测分析发现,植被指数与其他自然因素(如平均温度、平均降水量、平均气压等)对ρ(PM2.5)空间分布的影响均存在显著差异,与所有社会经济因素对ρ(PM2.5)空间分布的影响均不存在显著差异;除植被指数外,公交车辆数与其他自然因素及社会经济因素对ρ(PM2.5)空...  相似文献   

4.
基于2015~2019年长株潭城市群PM2.5和O3遥感浓度数据,利用空间自相关指数和地理加权回归(GWR)等方法探究PM2.5和O3浓度的时空分布特征及相关因素对其影响强度.结果表明:① PM2.5浓度整体呈现出冬季和春季高,夏季和秋季低的"U"型特征,而O3浓度则表现为夏季和秋季高,冬季和春季低的"M"型特征,PM2.5与O3年均浓度高低排序为:长沙市>湘潭市>株洲市.② PM2.5与O3浓度在夏季呈现正相关,秋冬季为负相关,且具有显著的空间集聚特征,O3浓度高-高集聚区的面积呈现逐年增加的趋势.③GWR结果显示:夜间灯光强度和人口密度都对PM2.5与O3具有正相关效应,其中,植被指数(NDVI)、风速和温度对PM2.5浓度的影响最为显著,而风速和温度对O3影响强度更为突出,不同因素对PM2.5和O3浓度影响具有显著的空间异质性.  相似文献   

5.
研究成渝城市群PM2.5浓度时空变化和驱动机制,对区域大气环境保护和国家经济可持续发展具有重要意义.基于PM2.5遥感数据、 DEM数据、基于站点的气象数据、 MODIS NDVI数据、人口密度数据、夜间灯光数据、路网数据和土地利用类型数据,采用Theil-Sen Median趋势分析和Mann-Kendall显著性检验等方法,结合地理探测器,在多时空尺度上分析成渝城市群PM2.5时空变化,并探测影响其变化的驱动机制.结果表明,2000~2021年成渝城市群PM2.5浓度整体呈波动下降态势,冬季PM2.5污染最为突出.PM2.5浓度具有明显的空间异质性,呈现出“中间高,四周低”的空间分布特征,PM2.5浓度高值区主要集中在自贡、内江、资阳和广安,PM2.5浓度呈显著下降的区域主要集中在重庆西部等地.因子探测结果表明,成渝城市群PM2.5浓度空间分异受气候、地形、植被和人文因子共同影响.高程、...  相似文献   

6.
为探究大气环境中污染物与气象要素交互作用对PM2.5浓度变化的影响特征,利用成都市2014~2020年逐日大气污染物资料以及同期的气象资料,采用广义相加模型(GAMs)分析不同影响因素对当地PM2.5浓度变化的影响效应.结果表明,单影响因素GAMs模型中,无论全年还是冬季,PM2.5浓度与平均气温(T)、相对湿度(RH)、平均风速(Wind)、降水量(Prec)、O3、NO2、SO2和CO间均呈非线性关系,其中CO、NO2、SO2T和Wind对PM2.5浓度影响较大,与全年不同的是,冬季T和O3对PM2.5浓度变化的影响效应较全年明显减弱.多影响因素的GAMs模型中,T、Wind、RH、CO、NO2、SO2和O3这7个解释变量对PM2.5浓度变化的影响均较显著,构建的全年多影响因素GAMs模型调整后的R2=0.759,方差解释率为76.42%,冬季R2=0.708,方差解释率为72.2%,无论是全年还是冬季,CO都是PM2.5浓度变化的主导影响因素.GAMs交互效应模型发现,全年弱低温(7℃左右)+高相对湿度+高浓度CO+高浓度NO2+高浓度SO2协同作用条件下有利于PM2.5浓度的生成;冬季低Wind+高RH+高浓度CO+高浓度NO2+高浓度SO2共存条件下有利于PM2.5的生成,即该条件对PM2.5浓度的生成有协同放大效应.运用GAMs模型能够对PM2.5污染的主导影响因素进行识别,并定量化分析影响因素单效应及其交互作用对PM2.5浓度变化的影响特征,对PM2.5浓度污染防控研究具有重要指示意义.  相似文献   

7.
中国典型城市群PM2.5污染特征研究进展   总被引:3,自引:2,他引:3       下载免费PDF全文
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,...  相似文献   

8.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

9.
城市空间结构影响空气流通等微环境,必然对PM2.5分布和扩散产生影响,研究两者关系对城市规划和建设具有积极意义。基于建筑构建城市空间结构指标体系,采用克里金插值等方法研究济南市中心城区PM2.5浓度的空间格局,运用相关分析方法基于全域和不同高程视角探究城市空间结构对PM2.5分布的影响。结果表明:1)DEM平均值、建筑绝对高度平均值、户外活动面积与PM2.5浓度呈负相关,建筑绝对高度最大值、建筑基底面积总和、建筑密度、占空比、建筑体积总和与PM2.5浓度呈正相关。这些指标是影响PM2.5分布的重要因素,城市规划布局时应重点考虑。2)不同高程和时间范围,PM2.5分布存在时空差异。PM2.5浓度越高,城市空间结构指标对其浓度分布的影响越明显。PM2.5浓度空间分布的变异系数越大,PM2.5浓度与各城市结构指标相关性越弱。3)地形高程是影响PM2.5分布的重要因素,随着平均高程增加,城市空间结构指标与PM2.5浓度呈显著相关的月份数量增加,且规律性更强。  相似文献   

10.
王丽丽  刘笑杰  李丁  孙颖琦 《环境科学》2022,43(3):1190-1200
基于地面站点监测数据,运用空间自相关分析和地理探测器等模型方法,探究了2018年长江经济带PM2.5污染的时空分异特征与驱动因素.结果表明:(1)长江经济带PM2.5浓度呈明显的夏低冬高、春秋居中的季节变化、 U形月度变化和脉冲型逐日变化特征,低值区集中在上游的南岸地区,高值区位于中下游的江北地区;(2)流域PM2.5污染存在稳定的空间正相关,局部空间关联格局展现显著的HH型和LL型的空间趋同现象;(3)长江经济带PM2.5空间相关强度随地理距离的增大而减小,其空间自相关性阈值约为870 km,在该范围内PM2.5空间集聚性较为强烈;(4)自然和人文因子对PM2.5影响程度具有显著的空间差异性特征,海拔高度、地形起伏度和人口密度是长江流域PM2.5污染的高作用力影响因子.因子交互作用后对PM2.5污染解释力远超单因子,主导交互因子为产业结构∩海拔高度,反映出长江流域大气污染的驱动因素具有复杂性特征.  相似文献   

11.
周志衡  周廷刚  秦宁 《环境科学》2022,43(12):5344-5353
城市群是中国PM2.5污染与防治的核心区.为探究中原城市群PM2.5浓度驱动因子的作用机制,基于多源遥感数据和统计数据,采用空间自相关、参数最优地理探测器以及系统动态面板回归模型等方法,量化了PM2.5浓度的驱动因子及因子间的联动效应,进一步分析了社会经济因素对PM2.5浓度的非线性影响并给出相应的治霾建议.结果表明:①2012~2018年,中原城市群PM2.5浓度下降程度存在空间分异,北部较南部地区污染减弱更为显著.②PM2.5浓度高值聚集有从中原城市群北部向东部转移的趋势,而低值聚集情况相对稳定.③高程对PM2.5浓度的解释力最强,因子间联动效应对PM2.5污染的解释力均表现为增强,其中高程与降水交互后解释力最强.④人均GDP、人口密度、夜间灯光、外商直接投资和第二产业占比均与PM2.5浓度之间存在非线性关系.结合中原城市群现状,加大污染治理投入、调整城市结构形态、加强基础设施建设、调整人口分布与产业结构、保持较高的城市活跃水平、设定严格的环境法规和引入高质量外商投资等有助于治理PM2.5污染.  相似文献   

12.
张军  金梓函  王玥  李旭  戴恩华 《环境科学》2022,43(12):5333-5343
PM2.5作为大气污染的主要来源,其时空演变格局和影响因素对于大气环境质量调控具有重要意义.基于2000~2020年PM2.5遥感反演数据,采用空间自相关和数理统计方法分析关中平原城市群PM2.5时空演变特征,以海拔、年均气温和人均GDP等10种因子为自变量,结合地理探测器和多尺度地理加权回归(MGWR)模型对PM2.5污染影响因素进行空间分异探究.结果表明:①2000~2020年,关中平原城市群PM2.5浓度总体呈下降趋势.浓度高值区集中在研究区中东部,低值区集中在研究区西部.热点区域集中在临汾市和运城市,冷点区则集中在天水市和宝鸡市.②自然因子在关中平原城市群PM2.5污染中占主导地位,2020年PM2.5浓度主控影响因子按解释力大小排序依次为:海拔>年均气温>地形起伏度>年均相对湿度>年降水量>人均GDP>植被覆盖度>能源消耗指数.③主控影响因子按照作用尺度大小排序依次为:植被覆盖度>年均气温>能源消耗指数>年降水量>地形起伏度>海拔>人均GDP>年均相对湿度.其中人均GDP、地形起伏度、能源消耗指数和年均气温主要为正向作用,植被覆盖度、年降水量、海拔和年均相对湿度主要为负向作用.研究得出了关中平原城市群PM2.5时空演变格局和影响因素,可为相关部门制定大气污染防治政策提供决策依据,同时丰富实证研究.  相似文献   

13.
曾德珩  陈春江 《环境科学研究》2019,32(11):1834-1843
随着工业化与城镇化的深入推进,成渝城市群的PM2.5污染不断加剧,呈明显的区域性与复合性特征.该研究以2015—2017年成渝城市群空气质量监测站的日均ρ(PM2.5)数据为基础,结合区域气象、遥感与统计年鉴等多源数据,采用反距离插值法分析了ρ(PM2.5)的时空分布差异,采用Moran's I指数与LISA指数探索了ρ(PM2.5)的全局和局部空间自相关性,并利用空间回归模型研究了自然、经济社会等因素对ρ(PM2.5)的影响.结果表明:①成渝城市群ρ(PM2.5)分布存在明显的时空差异.时间上,2015年PM2.5污染最严重,ρ(PM2.5)年均值为54.38 μg/m3,2016年、2017年PM2.5污染状况逐年减轻,ρ(PM2.5)年均值分别为53.68与47.56 μg/m3;空间上,成渝城市群东北部ρ(PM2.5)较低,而南部ρ(PM2.5)较高.②空间自相关分析结果表明,PM2.5污染在成渝城市群存在显著的空间聚集性,成渝城市群南部ρ(PM2.5)呈高值-高值聚集,成渝城市群北部ρ(PM2.5)则呈低值-低值聚集.③空间回归结果表明,成渝城市群范围内某一地区邻近区域的ρ(PM2.5)平均值增加1%时,该地区ρ(PM2.5)将上升至少0.38%.城镇化率对ρ(PM2.5)的影响最大,其次是第一产业增加值,再次是工业增加值占比和降水量.城镇化率、降水量与ρ(PM2.5)呈负相关,而第一产业增加值、工业增加值占比与ρ(PM2.5)呈正相关.研究显示,加快城镇化进程、减少第一产业排放、降低工业增加值占比(尤其是重污染工业)是有效解决成渝城市群PM2.5污染的重要手段.   相似文献   

14.
选取气溶胶光学厚度、海拔、年降水量、年均气温、年均风速、人口密度、GDP密度和NDVI作为影响因子,基于随机森林模型、特征重要性排序和偏依赖图技术,研究中国PM2.5浓度空间分布的影响因素及其区域差异.结果表明:①与多元回归、广义可加模型和BP神经网络相比,随机森林模型估算的PM2.5浓度精度最高,可用于PM2.5污染的影响因素研究.②PM2.5浓度随气溶胶光学厚度、人口密度和GDP密度的增加呈先上升后平稳的趋势,随降水、风速和NDVI的增加呈先下降后平稳的趋势,随海拔和气温的增加呈下降→上升→下降的趋势.③气溶胶光学厚度对PM2.5浓度空间分布的影响最大,可解释37.96%的PM2.5浓度空间分异;年降水量对PM2.5浓度空间分布的影响最小,解释率仅为5.75%.④影响因子与PM2.5浓度的关系存在空间异质性,同一影响因子对不同地理分区的PM2.5浓度的影响程度有所不同.气溶胶光学厚度对华...  相似文献   

15.
吴舒祺  么嘉棋  杨冉  张鐥文  赵文吉 《环境科学》2023,44(10):5325-5334
为协调经济发展与环境污染之间的矛盾,实现经济社会的可持续发展.以长三角城市群为研究区,基于PM2.5浓度和气象数据,分析PM2.5浓度的时空变化规律,并利用小波相干(WTC)、偏小波相干(PWC)和多小波相干(MWC),评估PM2.5与气象因子在时频域中的多尺度耦合振荡.结果表明:①②③④⑥⑤⑦⑧⑨⑩长三角城市群PM2.5浓度年均值由西北向东南梯度递减,高值区域空间范围逐年缩小.PM2.5浓度季节均值与年均值的空间分布特征相似,并且具有冬季最高,夏季最低,春秋过渡的特点.② PM2.5浓度从2015~2021年逐年下降,达标率逐年上升.PM2.5浓度差异逐年缩小,具有动态收敛性特征.PM2.5浓度在夏季的收敛性大于冬季.PM2.5浓度日均值具有U型振荡特征,整个研究期间PM2.5浓度等级为优和良的天数占比分别为49.72%和41.45%.③ PM2.5与气象因子的相干性在不同时频域上存在差异.时频尺度不同,影响PM2.5的主控因子也不尽相同.在所有时频尺度上,WTC结果表明风速可作为解释PM2.5变化的最佳变量,PWC结果表明温度可作为解释PM2.5变化的最佳变量.④时频尺度越大,多变量组合解释PM2.5变化的相互作用越强,而温度和风速的协同作用可以更好地解释PM2.5变化.结果可为长三角城市群空气污染防治提供参考.  相似文献   

16.
京津冀城市群是中国三大城市群之一,其城市化进程对大气污染造成了严重的影响.基于土地利用、站点实测和遥感反演的PM2.5浓度数据集,辅以趋势分析和分段线性回归等方法,分析了2000~2018年京津冀城市群PM2.5浓度的时空演变格局及其与城市扩张的关联.结果表明:(1) 2000~2018年京津冀城市群PM2.5浓度变化呈明显的阶段特征,2000~2013年PM2.5浓度呈显著增加的趋势[slope=1.598 0μg·(m3·a)-1,P<0.001],其中69.97%的区域呈显著增加趋势(P<0.05); 2013~2018年PM2.5浓度呈显著减小的趋势[slope=-4.990 8μg·(m3·a)-1,P<0.001],其中85.81%的区域呈显著减小的趋势(P<0.05);(2) PM2.5浓度整体呈从东南向西北递减的趋势,高污染区[ρ...  相似文献   

17.
PM2.5浓度空间分异模拟模型对比:以京津冀地区为例   总被引:1,自引:5,他引:1  
吴健生  王茜  李嘉诚  涂媛杰 《环境科学》2017,38(6):2191-2201
在我国快速的城市化进程中,快速的经济发展和日益增加的能源消耗带来的大气污染不断增加,特别是细颗粒物污染如PM2.5污染越来越严重,PM2.5污染相关研究成为一个热点议题.高浓度的PM2.5是形成我国京津冀、珠三角和长三角地区大气灰霾的主要原因,大气污染已成为制约京津冀地区乃至全国可持续发展的关键问题,长期暴露在PM2.5大气污染中,会对人类健康造成诸多不良影响.土地利用回归模型可以实现大气污染物浓度的时空模拟,明晰PM2.5浓度的空间分布特征对于大气污染的防治和流行病学的研究具有重要意义.本研究利用2014年1月1日至2014年12月31日京津冀地区104个监测站点的大气污染物浓度数据,结合VIIRS(visible infrared imaging radiometer)AOD(aerosol optical depth)、土地覆被、气象因子、道路分布、人口密度、污染源分布等信息,分别利用最小二乘和地理加权回归构建土地利用回归模型,对PM2.5浓度时空分布情况进行模拟,其中包括含VIIRS AOD数据的最小二乘土地利用模型和地理加权土地利用模型,以及不包含VIIRS AOD数据的最小二乘土地利用模型和地理加权土地利用模型,这4个模型的修正R2值分别为82.13%、84.87%、80.45%和81.99%.研究表明,相比最小二乘回归,使用地理加权回归的方法能一定程度上提升土地利用回归模型的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号